poj 3281 Dining【拆点网络流】
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 11828 | Accepted: 5437 |
Description
Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.
Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.
Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.
Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).
Input
Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.
Output
Sample Input
4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3
Sample Output
3
Hint
Cow 1: no meal
Cow 2: Food #2, Drink #2
Cow 3: Food #1, Drink #1
Cow 4: Food #3, Drink #3
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

如图,例如当1到4这条路走过后 4连上5,当2经过4后4又可以连上6,这就造成了一头牛吃了多种食物和饮料
2、食物->左牛->右牛->饮料

这种情况当左牛选中一个食物之后经过右牛,左右牛之间的路径已经满流不能继续走,就避免了一头牛吃多种食物和饮料的情况
AC代码:
#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
#include<algorithm>
#define MAX 1000
#define MAXM 200100
#define INF 0x7fffff
using namespace std;
int n,f,d;
int ans,head[MAX];
int cur[MAX];
int dis[MAX];
int vis[MAX];
int sect;
struct node
{
int from,to,cap,flow,next;
}edge[MAXM];
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v,int w)
{
edge[ans]={u,v,w,0,head[u]};
head[u]=ans++;
edge[ans]={v,u,0,0,head[v]};
head[v]=ans++;
}
void getmap()
{
int i,j,a,b,fi,di;
for(i=1;i<=n;i++)
{
scanf("%d%d",&fi,&di);
while(fi--)
{
scanf("%d",&a);
///xxx//add(0,a,1);//源点连食物
add(a,f+i,1);//食物连左牛
}
add(f+i,n+i+f,1);//左牛连右牛
while(di--)
{
scanf("%d",&b);
add(n+i+f,2*n+f+b,1);//右牛连饮料
}
}
int db=2*n+f+1,de=2*n+f+d;
for(i=1;i<=f;i++)
add(0,i,1);//源点连食物
for(i=db;i<=de;i++)
add(i,de+1,1);//饮料连超级汇点
sect=2*n+f+d+1;
}
int bfs(int beg,int end)
{
int i;
memset(vis,0,sizeof(vis));
memset(dis,-1,sizeof(dis));
queue<int>q;
while(!q.empty())
q.pop();
vis[beg]=1;
dis[beg]=0;
q.push(beg);
while(!q.empty())
{
int u=q.front();
q.pop();
for(i=head[u];i!=-1;i=edge[i].next)//遍历所有的与u相连的边
{
node E=edge[i];
if(!vis[E.to]&&E.cap>E.flow)//如果边未被访问且流量未满继续操作
{
dis[E.to]=dis[u]+1;//建立层次图
vis[E.to]=1;//将当前点标记
if(E.to==end)//如果当前点搜索到终点则停止搜索 返回1表示有从原点到达汇点的路径
return 1;
q.push(E.to);//将当前点入队
}
}
}
return 0;//返回0表示未找到从源点到汇点的路径
}
int dfs(int x,int a,int end)//把找到的这条边上的所有当前流量加上a(a是这条路径中的最小残余流量)
{
//int i;
if(x==end||a==0)//如果搜索到终点或者最小的残余流量为0
return a;
int flow=0,f;
for(int& i=cur[x];i!=-1;i=edge[i].next)//i从上次结束时的弧开始
{
node& E=edge[i];
if(dis[E.to]==dis[x]+1&&(f=dfs(E.to,min(a,E.cap-E.flow),end))>0)//如果
{//bfs中我们已经建立过层次图,现在如果 dis[E.to]==dis[x]+1表示是我们找到的路径
//如果dfs>0表明最小的残余流量还有,我们要一直找到最小残余流量为0
E.flow+=f;//正向边当前流量加上最小的残余流量
edge[i^1].flow-=f;//反向边
flow+=f;//总流量加上f
a-=f;//最小可增流量减去f
if(a==0)
break;
}
}
return flow;//所有边加上最小残余流量后的值
}
int Maxflow(int beg,int end)
{
int flow=0;
while(bfs(beg,end))//存在最短路径
{
memcpy(cur,head,sizeof(head));//复制数组
flow+=dfs(beg,INF,end);
}
return flow;//最大流量
}
int main()
{
int t;
while(scanf("%d%d%d",&n,&f,&d)!=EOF)
{
init();
getmap();
printf("%d\n",Maxflow(0,sect));
}
return 0;
}
poj 3281 Dining【拆点网络流】的更多相关文章
- POJ 3281 Dining (拆点)【最大流】
<题目链接> 题目大意: 有N头牛,F种食物,D种饮料,每一头牛都有自己喜欢的食物和饮料,且每一种食物和饮料都只有一份,让你分配这些食物和饮料,问最多能使多少头牛同时获得自己喜欢的食物和饮 ...
- poj 3281 Dining 拆点 最大流
题目链接 题意 有\(N\)头牛,\(F\)个食物和\(D\)个饮料.每头牛都有自己偏好的食物和饮料列表. 问该如何分配食物和饮料,使得尽量多的牛能够既获得自己喜欢的食物又获得自己喜欢的饮料. 建图 ...
- POJ 3281 Dining (网络流)
POJ 3281 Dining (网络流) Description Cows are such finicky eaters. Each cow has a preference for certai ...
- POJ 3281 Dining(最大流)
POJ 3281 Dining id=3281" target="_blank" style="">题目链接 题意:n个牛.每一个牛有一些喜欢的 ...
- poj 3281 Dining(网络流+拆点)
Dining Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 20052 Accepted: 8915 Descripti ...
- poj 3281 Dining 网络流-最大流-建图的题
题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...
- POJ 3281 Dining(网络流拆点)
[题目链接] http://poj.org/problem?id=3281 [题目大意] 给出一些食物,一些饮料,每头牛只喜欢一些种类的食物和饮料, 但是每头牛最多只能得到一种饮料和食物,问可以最多满 ...
- POJ - 3281 Dining(拆点+最大网络流)
Dining Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 18230 Accepted: 8132 Descripti ...
- 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)
Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...
随机推荐
- UIExtendedEdge
在IOS7以后 ViewController 开始使用全屏布局的,而且是默认的行为通常涉及到布局.就离不开这个属性 edgesForExtendedLayout,它是一个类型为UIExtendedEd ...
- Hibernate与数据库分表
数据库分片(shard)是一种在数据库的某些表变得特别大的时候采用的一种技术. 通过按照一定的维度将表切分,可以使该表在常用的检索中保持较高的效率,而那些不常用的记录则保存在低访问表中.比如:销售记录 ...
- 深入研究java.lang.ProcessBuilder类
深入研究java.lang.ProcessBuilder类 一.概述 ProcessBuilder类是J2SE 1.5在java.lang中新添加的一个新类,此类用于创建操作系统进程,它 ...
- Android版:验证手机号码的正则表达式
http://blog.csdn.net/dai_zhenliang/article/details/8186249 /** * 验证手机格式 */ public static boolean isM ...
- TSS 任务状态段
TSS(任务状态段) 1 什么是TSS TSS 全称task state segment,是指在操作系统进程管理的过程中,任务(进程)切换时的任务现场信息. 2 TSS工作细节 TSS在任务切换过程 ...
- JAVA大数类练手
今天突然看到了OJ上的大数类题目,由于学习了一点大数类的知识.果断水了6道题......都是非常基础的.就当的练手的吧. 学到的只是一些大数类的基本操作.以后多做点这样的题,争取熟练运用水大数题... ...
- SPRING IN ACTION 第4版笔记-第四章ASPECT-ORIENTED SPRING-005-定义切面使用@Aspect、@EnableAspectJAutoProxy、<aop:aspectj-autoproxy>
一. 假设有如下情况,有一个演凑者和一批观众,要实现在演凑者的演凑方法前织入观众的"坐下"."关手机方法",在演凑结束后,如果成功,则织入观众"鼓掌& ...
- 程序不稳定是因为C++基础不扎实
最近开发的程序,逻辑上都实现了,但是感觉运行不稳定,程序时不时崩溃(不是逻辑运行不正确),至少找出2个错误: 情况1:char* szRemoteReal = new char[MAX_LENGTH] ...
- 通过Hibernate将数据库在myeclipse中逆向生成
1.首先准备好数据库. 2.在MyEclipse的右上角切换透视图,切换到MyEclipse Database Explorer 3.在最左边点击右键,选择New(也就是新建一个数据库连接),然后编写 ...
- Android:MD5加密
/** * @author gongchaobin * * MD5加密 * * @version 2013-8-22 */ public class MD5Util { // 用来将字节转换成 16 ...