叉积概念的引入:

在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念。而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核心,计算机做的是数值运算,因此你需要做的就是把几何关系用代数关系表达出来。而在空间中,为了表示一个平面相对空间直角坐标系的倾斜程度,我们利用一个垂直该平面的法向量来度量(因为这转化成了描述直线倾斜程度的问题)。

叉积的定义:

注意这里的θ是根据右手法则和叉乘的顺序确定的,是具有一定的方向性,这种定义直接导致了叉乘在计算几何问题上的广泛应用。

通过这个定义式,我们马上能够很容易的得到如下的运算规律。

显然这个定义式我们不怎么喜欢,因为它代数化程度还是太浅,主要就是由于角的正弦值我们不好找,但是这丝毫不影响这个定义式在应用当中的重要性,下面我们需要解决的问题就是,找到一个等价的代数化程度更高的定义式。

叉积的行列式公式(以二维为例):

这里为什么是向量i叉乘向量j而不是向量j叉乘向量i,其实涉及到一个矢量的传递性,它的描述太过繁琐,这里暂且不提。

《University Calculus》-chape10-向量和空间几何学-叉积的更多相关文章

  1. 《University Calculus》-chape10-向量与空间几何学-向量夹角

    点积.向量夹角: 无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢? ...

  2. 《University Calculus》-chape6-定积分的应用-求体积

    定积分一个广泛的应用就是在求解一些“看似不规则”的几何体的体积,之所以说看似不规则,是因为不规则之下还是有一定的“规则性”可言的,我们就是需要抓住这些线索进行积分运算得到体积. 方法1:切片法. 这里 ...

  3. 《University Calculus》-chape12-偏导数-基本概念

    偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等 ...

  4. 《University Calculus》-chaper13-多重积分-三重积分的引入

    承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲 ...

  5. 《University Calculus》-chaper13-多重积分-二重积分的引入

    这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f ...

  6. 《University Calculus》-chape4-极坐标与圆锥曲线-极坐标系下的面积与弧长

    极坐标系下的面积: 在直角坐标系下一样,这里在极坐标系下,我们面临一个同样的问题:如何求解一个曲线围成的面积?虽然两种情况本质上是一样的,但是还是存在一些细小的区别. 在直角坐标系下中,我们是讨论一条 ...

  7. 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

    写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...

  8. 《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式

    基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.

  9. 《University Calculus》-chape3-微分法-基本概念、定理

    所谓微分法其实就是我们所熟悉的导数,它是一种无限分割的方法,同积分法一样,它们是处理曲线和曲面的有利工具,也是一门很伟大的自然语言.微分方程就是一种名副其实的描述自然的语言. 同样这里如果取单侧导数, ...

随机推荐

  1. PhpStorm 注册码

    JetBrains PhpStorm key PhpStorm注册码 User Name :  EMBRACE  License Key : License Key : ===== LICENSE B ...

  2. php编译安装扩展curl

    ./configure --with-php-config=/opt/software/php5.4/bin/php-configyum install curl curl-devel

  3. Shell: how to list all db links in oracle DB to generate a flat file (生成dblink列表文件)

    如果数据库里有上百个DATABASE LINK, 而且同时要管理几十套这样的数据库,在日后改数据库用户密码时就要格外注意是否有DB LINK在使用,否则只改了LOCAL DB 的用户密码,没有级连修改 ...

  4. Constant is not finite! That's illegal. constant:inf'

    原本使用正常的情况, 切换为测试库突然出现这个错误, 网上搜索并排查后得出导致这个问题的原因: (1)就是你的除数为0(2)除数或者被除数为null 找出你出错的界面, 并打断点, 看看是否出现上面两 ...

  5. 如何在cmd中运行数据库

    在开始菜单中输入cmd 在控制板输入:net  start  MSSQLserver 启动数据库 在控制板输入:net  stop  MSSQLserver 关闭数据库 在控制板输入:net  pur ...

  6. 【转载】介绍“Razor”— ASP.NET的一个新视图引擎

    最近在做一个项目,用的MVC razor 视图,因为之前没用这个视图做过,于是查阅文档资料,共享一下. https://msdn.microsoft.com/zh-cn/ff849693 内容主要是讲 ...

  7. ios专题 - 安全

    iOS通过以下几种机制来保全整个系统的安全性: 一:系统结构 所有iOS设备中,系统与硬件都高度集成,从系统启动.系统更新.应用的安装.应用的运行时等多个方面来保全系统的安全,具体包括: 1:所有iO ...

  8. fedora22 无法联网的情况下rpm安装gcc5.1

    前天发生件很不幸的事.我在给ubuntu14.04安装NVIDIA显卡驱动的时候,想清空下一个目录,什么目录我也忘了,当时我正好切到root身份(平常我很少切root的),命令格式如下 rm -fr ...

  9. Java实现单向链表

    /* 先定义一个Node类用来存储节点的值域和指针域 * 即当前节点中的值和后面节点的方法 * 在C中就是相当与定义一个结构体类型一个数据域和指针域的方法 */class LNode{//这个写法已经 ...

  10. mongoengine教程1

    mongoengine安装过程,建议先安装好pip,pip是不Python不错的安装包管理器,安装命令:pip install mongoengine. mongoengine是mongodb的pyt ...