Problem Description
The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are
summed and the process is repeated. This is continued as long as necessary to obtain a single digit.



For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process
must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.
Input
The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.
Output
For each integer in the input, output its digital root on a separate line of the output.
Sample Input
24
39
0
Sample Output
6
3
一个数对九取余,得到的数称之为九余数;
一个数的九余数等于它的各个数位上的数之和的九余数!

题目大意:

给定一个正整数,根据一定的规则求出该数的“数根”,其规则如下:

例如给定 数字 24,将24的各个位上的数字“分离”,分别得到数字 2 和 4,而2+4=6;

因为 6 < 10,所以就认为6是数字24的“数根”;

而对于数字 39 , 将39的各个位上的数字“分离”,分别得到数字 3 和 9,而3+9=12,且12>10;

所以依据规则再对 12 进行相应的运算,最后得到数字3,而3<10,所以就认为3是数字39的“数根”。

通过运算可以发现任何一个数的“数根”都是一个取值范围在 1 ~ 9之间的正整数,

且任何一个正整数都只有唯一的一个“数根”与其相对应。

题目要求数字 n^n 的“数根”

解题思路:

九余数定理

一个数对九取余后的结果称为九余数。

一个数的各位数字之和想加后得到的<10的数字称为这个数的九余数(如果相加结果大于9,则继续各位相加)

代码如下:
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
int main()
{
char a[1010];
int i,j,s,l;
while(~scanf("%s",&a)&&a[0]!='0')
{
l=strlen(a);
s=0;
for(i=0;i<l;i++)
{
s=s+a[i]-'0';
}
s=s%9;
if(s==0)
s=9;
printf("%d\n",s);
}
return 0;
}

一个数对九取余,得到的数称之为九余数;
一个数的九余数等于它的各个数位上的数之和的九余数!

HDOJ 1013题Digital Roots 大数,9余数定理的更多相关文章

  1. HDOJ 1163 Eddy's digital Roots(九余数定理的应用)

    Problem Description The digital root of a positive integer is found by summing the digits of the int ...

  2. Eddy's digital Roots(九余数定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  3. HDU-1163 Eddy's digital Roots(九余数定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  4. HDU——1163Eddy's digital Roots(九余数定理+同余定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  5. hdu 1163 Eddy's digital Roots 【九余数定理】

    http://acm.hdu.edu.cn/showproblem.php?pid=1163 九余数定理: 如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除:如果一个数各个数位上的数字 ...

  6. 1013:Digital Roots

    注意:大数要用字符串表示! sprintf:字符串格式化命令 主要功能:将格式化的数据写入某个字符串缓冲区 头文件:<stdio.h> 原型 int sprintf( char *buff ...

  7. HDU 1013 Digital Roots(字符串,大数,九余数定理)

    Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. HDU 1013 Digital Roots【字符串,水】

    Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  9. HDU 1013 Digital Roots(to_string的具体运用)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1013 Digital Roots Time Limit: 2000/1000 MS (Java/Othe ...

随机推荐

  1. .NET设计模式(9):桥接模式(Bridge Pattern)

      .NET设计模式(9):桥接模式(Bridge Pattern)   桥接模式(Bridge Pattern) --.NET设计模式系列之九 年月 实现代码如下:..所谓抽象和实现沿着各自维度的变 ...

  2. A题笔记(6)

    No. 3040 代码量好少,主要考到数学知识 唯一需要注意的是变量的类型 int -2147483648 ~ +2147483647 (4 Bytes) long 在32位机器中 int 类型 和 ...

  3. Synchronized vs SyncRoot

    我们知道,在.net的一些集合类型中,譬如Hashtable和ArrayList,都有Synchronized静态方法和SyncRoot实例方法,他们之间有联系吗?我怎么才能用好他们呢?我们以Hash ...

  4. Oracle11g服务及实例

    1Orcl服务说明 1) Oracle ORCL VSS Writer Service:Oracle卷映射拷贝写入服务,VSS(Volume Shadow Copy Service)能够让存储基础设备 ...

  5. boost::bind实践

    第一部分源码为基础实践: /*Beyond the C++ Standard Library ( An Introduction to Boost )[CN].chm*/ /*bind的用法*/ #i ...

  6. printf 输出格式

    printf 输出格式C中格式字符串的一般形式为: %[标志][输出最小宽度][.精度][长度]类型,其中方括号[]中的项为可选项.各项的意义介绍如下:1.类型类型字符用以表示输出数据的类型,其格式符 ...

  7. grub2 使用memdisk工具 启动任意iso

    root@zhanghua-Inspiron-:/home/zhanghua# df -h 文件系统 容量 已用 可用 已用% 挂载点 /dev/sda6 60G 12G 46G 21% / none ...

  8. 设置(TableViewController)通用框架

    本文学习于传播播客.李明杰老师.感谢

  9. C# 仿迅雷风格选项卡

    private void listView1_SelectedIndexChanged(object sender, EventArgs e) { listView1.FullRowSelect = ...

  10. GCC编译器的安装

    1.GCC简介 GCC(GNU Compiler Collection)是一套功能强大.性能优越的编程语言编译器,它是GNU计划的代表作品之一.GCC是Linux平台下最常用的编译器,GCC原名为GN ...