Description

【题目描述】同3545

Input

第一行三个数N,M,Q。
第二行N个数,第i个数为h_i
接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径。
接下来Q行,每行三个数v x k,表示一组询问。v=v xor lastans,x=x xor lastans,k=k xor lastans。如果lastans=-1则不变。
 

Output

同3545

Sample Input

Sample Output

HINT

【数据范围】同3545

Source

Kruskal重构树,就是在合并的时候新建一个节点,点权为边权。。

有一些性质:

1.这是一棵二叉树。(没卵用)

2.原树点都是叶子结点。

3.子结点比父结点点权小(大根堆)。

4.原树与新树两点间路径最大值与新树相等,且等于新树两点lcalca点权。

所以只要从v点往上跳到深度最浅的<=x的点,然后查询子树第k大即可。。

然而死活RE,弃了弃了。。。

// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#define RG register
using namespace std;
typedef long long ll;
const int N=400050;
int n,m,Q,sz,fa[N],rt[N],ls[N*20],rs[N*20],sum[N*20],hsh[N],Fa[N];
int id[N],dfn[N],ed[N],h[N],v[N],size[N],son[N],top[N];
struct data{
int a,b,c;
}e[500050];
bool cmp(const data &a,const data &b){return a.c<b.c;}
int head[N],to[N],nxt[N],cnt,tt,tot,res;
inline void lnk(int x,int y){
to[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;
}
inline int find(int x){
if(x!=fa[x]) fa[x]=find(fa[x]);
return fa[x];
}
inline void dfs1(int x,int f){
size[x]=1;
for(RG int i=head[x];i;i=nxt[i]){
int y=to[i];
if(y!=f){
Fa[y]=x;dfs1(y,x);size[x]+=size[y];
if(size[y]>size[son[x]]) son[x]=y;
}
}
}
inline void dfs2(int x,int ff){
dfn[x]=++tot;id[tot]=x;top[x]=ff;
if(son[x]) dfs2(son[x],ff);
for(RG int i=head[x];i;i=nxt[i]){
int y=to[i];
if(y!=Fa[x]&&y!=son[x]) dfs2(y,y);
}
ed[x]=tot;
}
inline void insert(RG int x,RG int &y,RG int l,RG int r,RG int u){
y=++sz;ls[y]=ls[x],rs[y]=rs[x];sum[y]=sum[x]+1;
if(l==r) return;
RG int mid=(l+r)>>1;
if(u<=mid) insert(ls[x],ls[y],l,mid,u);
else insert(rs[x],rs[y],mid+1,r,u);
}
inline int query(RG int x,RG int y,RG int l,RG int r,RG int k){
if(l==r) return l;
RG int mid=(l+r)>>1;
if(sum[ls[y]]-sum[ls[x]]>=k) return query(ls[x],ls[y],l,mid,k);
else return query(rs[x],rs[y],mid+1,r,k-(sum[ls[y]]-sum[ls[x]]));
}
inline int jump(RG int x,RG int lim){
RG int j=x;
while(x&&v[top[x]]<=lim){
j=top[x],x=Fa[top[x]];
}
if(v[x]>lim||v[top[x]]<=lim) return j;
RG int l=dfn[top[x]],r=dfn[x],ret=0;
while(l<=r){
RG int mid=(l+r)>>1;
if(v[id[mid]]<=lim) r=mid-1,ret=mid;
else l=mid+1;
}
return id[ret];
}
int main(){
freopen("Peaks.in","r",stdin);
freopen("Peaks.out","w",stdout);
scanf("%d%d%d",&n,&m,&Q);
for(RG int i=1;i<=n;i++) scanf("%d",&h[i]),hsh[++res]=h[i];
for(RG int i=1;i<=m;i++) scanf("%d%d%d",&e[i].a,&e[i].b,&e[i].c);
sort(e+1,e+1+m,cmp);for(int i=1;i<=n;i++) fa[i]=i;tt=n;
for(RG int i=1;i<=m;i++){
RG int x=find(e[i].a),y=find(e[i].b);
if(y!=x){
tt++;v[tt]=e[i].c;fa[x]=fa[y]=tt;fa[tt]=tt;
lnk(tt,x);lnk(tt,y);
}
}
for(RG int i=1;i<=tt;i++){
RG int g=find(i);
if(!dfn[g]) dfs1(g,g),dfs2(g,g);
}
sort(hsh+1,hsh+res+1);res=unique(hsh+1,hsh+1+res)-hsh-1;
for(RG int i=1;i<=tot;i++){
rt[i]=rt[i-1];
if(id[i]<=n) insert(rt[i],rt[i],1,res,lower_bound(hsh+1,hsh+1+res,h[id[i]])-hsh);
}
RG int lastans=0;
while(Q--){
RG int u,x,k;scanf("%d%d%d",&u,&x,&k);
u^=lastans,x^=lastans,k^=lastans;
RG int Lca=jump(u,x);
if(sum[rt[ed[Lca]]]-sum[rt[dfn[Lca]-1]]<k) puts("-1"),lastans=0;
else lastans=query(rt[dfn[Lca]-1],rt[ed[Lca]],1,res,(sum[rt[ed[Lca]]]-sum[rt[dfn[Lca]-1]])-k+1),printf("%d\n",hsh[lastans]);
}
return 0;
}

  

bzoj 3551: [ONTAK2010]Peaks加强版的更多相关文章

  1. BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]

    3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...

  2. bzoj 3551 [ONTAK2010]Peaks加强版(kruskal,主席树,dfs序)

    Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...

  3. BZOJ.3551.[ONTAK2010]Peaks加强版(Kruskal重构树 主席树)

    题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. 强制在线. \ ...

  4. 【刷题】BZOJ 3551 [ONTAK2010]Peaks加强版

    Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...

  5. BZOJ 3551: [ONTAK2010]Peaks加强版 Kruskal重构树+dfs序+主席树+倍增

    建出来 $Kruskal$ 重构树. 将询问点向上跳到深度最小,且合法的节点上. 那么,得益于重构树优美的性质,这个最终跳到的点为根的所有子节点都可以与询问点互达. 对于子树中求点权第 $k$ 大的问 ...

  6. 3551: [ONTAK2010]Peaks加强版

    3551: [ONTAK2010]Peaks加强版 https://www.lydsy.com/JudgeOnline/problem.php?id=3551 分析: kruskal重构树 +  倍增 ...

  7. bzoj 3545&&3551: [ONTAK2010]Peaks &&加强版 平衡树&&并查集合并树&&主席树

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 635  Solved: 177[Submit][Stat ...

  8. ●BZOJ 3551 [ONTAK2010]Peaks(在线)

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3551 题解: 最小生成树 Kruskal,主席树,在线 这个做法挺巧妙的...以Kruska ...

  9. 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1202  Solved: 321[Submit][Sta ...

随机推荐

  1. 「JavaScript」手起刀落-一起来写经典的贪吃蛇游戏

    回味 小时候玩的经典贪吃蛇游戏我们印象仍然深刻,谋划了几天,小时候喜欢玩的游戏,长大了终于有能力把他做出来(从来都没有通关过,不知道自己写的程序,是不是能通关了...),好了,闲话不多谈,先来看一下效 ...

  2. Mysql--数据的操作

    1.插入数据 1.1 插入完整数据记录 语法1: 例子: 语法2: 例子: 1.2 插入数据记录一部分 语法: 例子: 1.3 插入多条数据记录 1.插入多条完整的数据 语法: 例子:   插入多条部 ...

  3. 百度OCR文字识别-身份证识别

    简介 一.介绍 身份证识别 API 接口文档地址:http://ai.baidu.com/docs#/OCR-API/top 接口描述 用户向服务请求识别身份证,身份证识别包括正面和背面. 请求说明 ...

  4. 关于websorm卡顿的问题

    要是电脑不卡的话,使用webstorm真可谓是一种享受,但是随着项目的开展,文件逐渐增大,webstorm自然也会出现卡顿(毕竟缺点就是吃内存),这个时候我们可以增加Xms设置 Start1: 1 找 ...

  5. Nginx软件部署配置过程

    ---恢复内容开始--- 注意:博主使用的系统为: [root@web01 ~]# uname -a Linux web01 2.6.32-696.el6.x86_64 #1 SMP Tue Mar ...

  6. 智能合约语言 Solidity 教程系列4 - 数据存储位置分析

    写在前面 Solidity 是以太坊智能合约编程语言,阅读本文前,你应该对以太坊.智能合约有所了解, 如果你还不了解,建议你先看以太坊是什么 这部分的内容官方英文文档讲的不是很透,因此我在参考Soli ...

  7. 10_Eclipse中演示Git冲突的解决

     1 在user1中的readme.txt文件里先改动,而且commitand push 选中user1,右击team->Commit-à watermark/2/text/aHR0cDov ...

  8. Janus 二元神漏洞测试

    同步发表于:http://blog.hacktons.cn/2017/12/25/janus-demo/ 背景 12月9号,Andorid对外曝光了一个名为Janus的重量级系统漏洞CVE-2017- ...

  9. 使用github+jekyll搭建个人博客

    聊聊起初 每次看到大牛们的博客,都会激起一颗一定要搭建自己博客的心,毕竟有着一颗向大牛们看齐的心.但是一直不知道如何下手,从最初的csdn写写博客到在github上建立仓库写代码分享,虽然也能够记录一 ...

  10. 【SqlServer系列】聚合函数

    1   概述 本篇文章简要回顾SQL Server  聚合函数,MAX,MIN,SUM,AVG,SUM,CHECKSUM_EGG,COUNT,STDEV,STDEVP,VAR,VARP. 2   具体 ...