bzoj 2302: [HAOI2011]Problem c
Description
Input
第一行一个整数T,表示数据组数
对于每组数据,第一行有三个整数,分别表示n、m、M
若m不为0,则接下来一行有m对整数,p1、q1,p2、q2 ,…, pm、qm,其中第i对整数pi、qi表示第pi个人的编号必须为qi
Output
对于每组数据输出一行,若是有解则输出YES,后跟一个整数表示方案数mod M,注意,YES和数之间只有一个空格,否则输出NO
Sample Input
4 3 10
1 2 2 1 3 1
10 3 8882
7 9 2 9 5 10
Sample Output
YES 4
HINT
100%的数据满足:1≤T≤10,1≤n≤300,0≤m≤n,2≤M≤109,1≤pi、qi≤n 且保证pi互不相同。
Source
这题的状态简直是妙不可言;
我们考虑不合法的情况,我们记编号>=i的数量为s[i],那么只要s[i]>n-i+1就不合法;
那么我们问题可以简化为对于任意的i,都有编号>=i的人数<=i;然后就可以进行dp了;
我们设f[i][j]表示已经填了前i个编号,标号小于等于i的有j个的方案数;
然后记cnt[i],为编号必须为i的数量,sum[i]表示编号可以<=i的数量;
转移方程为 f[i][j]=∑f[i-1][j-k]*C*(sum[i]-(j-k)-cnt[i],k-cnt[i]);
其中k为这次选择编号为<=i的数量,那么这次能够自由选择的数量为sum[i]-(j-k)-cnt[i],(其中sum[i]为总共的,(j-k)为之前有的,cnt[i]为已经固定的)
注意在转移的时候要保证j>=i,否则是不合法的;
//MADE BY QT666
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=1050;
int cnt[N],sum[N],mod,n,m;
ll c[N][N],f[N][N];
int main(){
int T;scanf("%d",&T);
while(T--){
int flg=0;
scanf("%d%d%d",&n,&m,&mod);
memset(cnt,0,sizeof(cnt));
memset(sum,0,sizeof(sum));
memset(c,0,sizeof(c));
memset(f,0,sizeof(f));
for(int i=1;i<=m;i++){
int p,q;scanf("%d%d",&p,&q);cnt[q]++;
}
sum[0]=n-m;
for(int i=1;i<=n;i++){
sum[i]=sum[i-1]+cnt[i];
if(sum[i]<i) {puts("NO"),flg=1;break;}
}
if(flg) continue;
else{
for(int i=0;i<=n;++i) c[i][0]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j){
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
}
f[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=i;j<=sum[i];j++){
for(int k=cnt[i];k<=j-i+1;k++){
(f[i][j]+=(f[i-1][j-k]*c[sum[i]-(j-k)-cnt[i]][k-cnt[i]])%mod)%=mod;
}
}
}
cout<<"YES ";printf("%lld\n",f[n][n]);
}
return 0;
}
bzoj 2302: [HAOI2011]Problem c的更多相关文章
- BZOJ 2302: [HAOI2011]Problem c( dp )
dp(i, j)表示从i~N中为j个人选定的方案数, 状态转移就考虑选多少人为i编号, 然后从i+1的方案数算过来就可以了. 时间复杂度O(TN^2) ------------------------ ...
- BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]
2302: [HAOI2011]Problem c Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 648 Solved: 355[Submit][S ...
- BZOJ 2302: [HAOI2011]Problem c(数学+DP)
题面: bzoj_2302 题解: 令\(dp[i][j]\)表示编号 \(\leq i\)的人有j个的方案数: \(cnt[i]\)表示编号指定为\(i\)的人数,\(sum[i]\)表示编号可以\ ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- bzoj 2301: [HAOI2011]Problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...
- BZOJ 2298: [HAOI2011]problem a 动态规划
2298: [HAOI2011]problem a Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ 2301: [HAOI2011]Problem b( 数论 )
和POI某道题是一样的... http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...
- BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 6519 Solved: 3026[Submit] ...
随机推荐
- 【javaFX学习】(一) 建一个简单的界面
转载注明出处:http://www.cnblogs.com/lensener/p/7976953.html 用过swing都知道有多蛋疼,界面有多丑.自从用了javaFX,腰也不酸了,腿也不疼了. 废 ...
- Android开发之漫漫长途 Ⅷ——Android Binder(也许是最容易理解的)
该文章是一个系列文章,是本人在Android开发的漫漫长途上的一点感想和记录,我会尽量按照先易后难的顺序进行编写该系列.该系列引用了<Android开发艺术探索>以及<深入理解And ...
- ZOJ 2859 二维RMQ(模板)
这题求范围最小值,RMQ正好是用来解决这方面的.所以再适合只是了,又是离线静态输入输出的,所以时间比二维线段树快. #include<iostream> #include<cstdi ...
- Oracle改动字段类型和长度
Oracle改动字段名 alter table 表名 rename column 旧字段名 to 新字段名 Oracle改动字段类型和长度 alter table 表名 modify 字段名 数据类型 ...
- 【Access2007】解救被阉割的truncate
Access2007使用被阉割的J-SQL语句,语法跟T-SQL语句.也就是寻常最标准的SQL语句一模一样,但就是仅保留insert into,delete,select,update与没太大意义的过 ...
- SpringMVC上传图片并压缩及剪切demo
/** * */ package com.up.controller; import java.awt.Image; import java.awt.image.BufferedImage; impo ...
- Hadoop之SequenceFile
Hadoop序列化文件SequenceFile能够用于解决大量小文件(所谓小文件:泛指小于black大小的文件)问题,SequenceFile是Hadoop API提供的一种二进制文件支持.这样的二进 ...
- HDU 1160 FatMouse's Speed (最长有序的上升子序列)
题意:给你一系列个w,s.要你找到最长的n使得 W[m[1]] < W[m[2]] < ... < W[m[n]] and S[m[1]] > S[m[2]] > ... ...
- Ration Rose2003安装及破解
曾经学习UML的时候,用的是EA. 近期在看Head First想着画绘图装一下Ration Rose吧.于是就着手開始装.本来网上关于Ration Rose的安装及破解教程非常多,可是我在安装的过程 ...
- android之获取屏幕的宽度和高度
获取屏幕的宽度和高度: 方法一: //获取屏幕的宽度 public static int getScreenWidth(Context context) { WindowManager manager ...