Description

给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了,就尝试ai+1,ai+1也被占据了的话就尝试ai+2,……,如果一直尝试到第n个都不行,该安排方案就不合法。然而有m个人的编号已经确定(他们或许贿赂了你的上司...),你只能安排剩下的人的编号,求有多少种合法的安排方案。由于答案可能很大,只需输出其除以M后的余数即可。

Input

第一行一个整数T,表示数据组数

对于每组数据,第一行有三个整数,分别表示n、m、M

若m不为0,则接下来一行有m对整数,p1、q1,p2、q2 ,…, pm、qm,其中第i对整数pi、qi表示第pi个人的编号必须为qi

Output

对于每组数据输出一行,若是有解则输出YES,后跟一个整数表示方案数mod M,注意,YES和数之间只有一个空格,否则输出NO

Sample Input

2

4 3 10

1 2 2 1 3 1

10 3 8882

7 9 2 9 5 10

Sample Output

YES 4

NO

HINT

100%的数据满足:1≤T≤10,1≤n≤300,0≤m≤n,2≤M≤109,1≤pi、qi≤n   且保证pi互不相同。

Source

这题的状态简直是妙不可言;

我们考虑不合法的情况,我们记编号>=i的数量为s[i],那么只要s[i]>n-i+1就不合法;

那么我们问题可以简化为对于任意的i,都有编号>=i的人数<=i;然后就可以进行dp了;

我们设f[i][j]表示已经填了前i个编号,标号小于等于i的有j个的方案数;

然后记cnt[i],为编号必须为i的数量,sum[i]表示编号可以<=i的数量;

转移方程为 f[i][j]=∑f[i-1][j-k]*C*(sum[i]-(j-k)-cnt[i],k-cnt[i]);

其中k为这次选择编号为<=i的数量,那么这次能够自由选择的数量为sum[i]-(j-k)-cnt[i],(其中sum[i]为总共的,(j-k)为之前有的,cnt[i]为已经固定的)

注意在转移的时候要保证j>=i,否则是不合法的;

//MADE BY QT666
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=1050;
int cnt[N],sum[N],mod,n,m;
ll c[N][N],f[N][N];
int main(){
int T;scanf("%d",&T);
while(T--){
int flg=0;
scanf("%d%d%d",&n,&m,&mod);
memset(cnt,0,sizeof(cnt));
memset(sum,0,sizeof(sum));
memset(c,0,sizeof(c));
memset(f,0,sizeof(f));
for(int i=1;i<=m;i++){
int p,q;scanf("%d%d",&p,&q);cnt[q]++;
}
sum[0]=n-m;
for(int i=1;i<=n;i++){
sum[i]=sum[i-1]+cnt[i];
if(sum[i]<i) {puts("NO"),flg=1;break;}
}
if(flg) continue;
else{
for(int i=0;i<=n;++i) c[i][0]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j){
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
}
f[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=i;j<=sum[i];j++){
for(int k=cnt[i];k<=j-i+1;k++){
(f[i][j]+=(f[i-1][j-k]*c[sum[i]-(j-k)-cnt[i]][k-cnt[i]])%mod)%=mod;
}
}
}
cout<<"YES ";printf("%lld\n",f[n][n]);
}
return 0;
}
 

bzoj 2302: [HAOI2011]Problem c的更多相关文章

  1. BZOJ 2302: [HAOI2011]Problem c( dp )

    dp(i, j)表示从i~N中为j个人选定的方案数, 状态转移就考虑选多少人为i编号, 然后从i+1的方案数算过来就可以了. 时间复杂度O(TN^2) ------------------------ ...

  2. BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]

    2302: [HAOI2011]Problem c Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 648  Solved: 355[Submit][S ...

  3. BZOJ 2302: [HAOI2011]Problem c(数学+DP)

    题面: bzoj_2302 题解: 令\(dp[i][j]\)表示编号 \(\leq i\)的人有j个的方案数: \(cnt[i]\)表示编号指定为\(i\)的人数,\(sum[i]\)表示编号可以\ ...

  4. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  5. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  6. BZOJ 2298: [HAOI2011]problem a 动态规划

    2298: [HAOI2011]problem a Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  7. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  8. BZOJ 2301: [HAOI2011]Problem b( 数论 )

    和POI某道题是一样的...  http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...

  9. BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6519  Solved: 3026[Submit] ...

随机推荐

  1. 实验:ignite查询效率探究

    前面的文章讲到ignite支持扫描查询和sql查询,其sql查询是ignite产品的一个亮点,那么哪一种的查询更适合我们的产品使用呢,往下看: 先分别贴一下扫描查询和sql查询两种查询方式的代码,供参 ...

  2. scrapy初试水 day01

    1.安装pip install Scrapy#一定要以管理员身份运行dos窗口conda install scrapy2.创建项目scrapy startproject hello3.在hello/s ...

  3. 实践作业1:测试管理工具实践 Day4

    由小组吴辉同学和王俊杰同学负责撰写使用手册,详细记录了环境配置完整过程,以及从软件登陆开始,创建一个测试计划,创建新版本,创建测试用例集,分配测试用例到测试计划,关联到测试用例这一系列完整过程. 刘思 ...

  4. 音频传输之Jitter Buffer设计与实现

    在语音通信中Jitter Buffer(下面简称JB)是接收侧一个非常重要的模块,它是决定音质的重要因素之一.一方面它会把收到的乱序的语音包排好序放在buffer里正确的位置上,另一方面它把接收到的语 ...

  5. Python3使用PyQt5制作简单的画板/手写板

    0.目录 1.前言 2.简单的画板1.0 在定点和移动中的鼠标所在处画一条线 3.简单的画板2.0 在定点和移动中的鼠标所在处画一条线 并将画过的线都保留在窗体上 4.简单的画板3.0 将按住鼠标后移 ...

  6. QScintilla 编译

    直接上英文了,不翻译了.看不懂的可以留言哈. ———————————————————————————————————————— Installation As supplied QScintilla ...

  7. Markdown语法入门

    本文内容参考与这里,本篇文档,用Markdown语法写成. 概述 宗旨 Markdown 的目标是实现「易读易写」. 可读性,无论如何,都是最重要的.一份使用 Markdown 格式撰写的文件应该可以 ...

  8. 二叉树的递归遍历 Tree UVa548

    题意:给一棵点带权的二叉树的中序和后序遍历,找一个叶子使得他到根的路径上的权值的和最小,如果多解,那该叶子本身的权值应该最小 解题思路:1.用getline()输入整行字符,然后用stringstre ...

  9. 程序员的自我救赎---1.4.3: 核心框架讲解(MVC)

    <前言> (一) Winner2.0 框架基础分析 (二)PLSQL报表系统 (三)SSO单点登录 (四) 短信中心与消息中心 (五)钱包系统 (六)GPU支付中心 (七)权限系统 (八) ...

  10. ettercap的中间人欺骗+sslstrip过滤掉https协议

    环境准备:kali系统 因为kali系统自带ettercap,比较方便, 不需要安装 ifcofing命令查看当前网关 ,当前的IP是: 172.16.42.1 查找局域网所有主机 通过netdisc ...