Numpy中Meshgrid函数介绍及2种应用场景
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法。
但总觉得印象不深刻,不是太了解meshgrid的应用场景。
所以,本文将进一步介绍Numpy中meshgrid的用法。
Meshgrid函数的基本用法
在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度。
可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格。
用法:
[X,Y]=meshgrid(x,y)
[X,Y]=meshgrid(x)与[X,Y]=meshgrid(x,x)是等同的
[X,Y,Z]=meshgrid(x,y,z)生成三维数组,可用来计算三变量的函数和绘制三维立体图
这里,主要以[X,Y]=meshgrid(x,y)为例,来对该函数进行介绍。
[X,Y] = meshgrid(x,y) 将向量x和y定义的区域转换成矩阵X和Y,其中矩阵X的行向量是向量x的简单复制,而矩阵Y的列向量是向量y的简单复制(注:下面代码中X和Y均是数组,在文中统一称为矩阵了)。
假设x是长度为m的向量,y是长度为n的向量,则最终生成的矩阵X和Y的维度都是 n*m (注意不是m*n)。
文字描述可能不是太好理解,下面通过代码演示下:
加载数据
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
m, n = (5, 3)
x = np.linspace(0, 1, m)
y = np.linspace(0, 1, n)
X, Y = np.meshgrid(x,y)
查看向量x和向量y
x
out:
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
y
out:
array([ 0. , 0.5, 1. ])
查看矩阵X和矩阵Y
X
out:
array([[ 0. , 0.25, 0.5 , 0.75, 1. ],
[ 0. , 0.25, 0.5 , 0.75, 1. ],
[ 0. , 0.25, 0.5 , 0.75, 1. ]])
Y
out:
array([[ 0. , 0. , 0. , 0. , 0. ],
[ 0.5, 0.5, 0.5, 0.5, 0.5],
[ 1. , 1. , 1. , 1. , 1. ]])
查看矩阵对应的维度
X.shape
out:
(3, 5)
Y.shape
out:
(3, 5)
meshgrid函数的运行过程,可以通过下面的示意图来加深理解:
再者,也可以通过在matplotlib中进行可视化,来查看函数运行后得到的网格化数据的结果
plt.plot(X, Y, marker='.', color='blue', linestyle='none')
plt.show()
当然,我们也可以获得网格平面上坐标点的数据,如下:
z = [i for i in zip(X.flat,Y.flat)]
z
out:
[(0.0, 0.0),
(0.25, 0.0),
(0.5, 0.0),
(0.75, 0.0),
(1.0, 0.0),
(0.0, 0.5),
(0.25, 0.5),
(0.5, 0.5),
(0.75, 0.5),
(1.0, 0.5),
(0.0, 1.0),
(0.25, 1.0),
(0.5, 1.0),
(0.75, 1.0),
(1.0, 1.0)]
Meshgrid函数的一些应用场景
Meshgrid函数常用的场景有等高线绘制及机器学习中SVC超平面的绘制(二维场景下)。
分别图示如下:
(1)等高线
(2)SVC中超平面的绘制:
关于场景(1)和场景(2),将在后续的文章里做进一步描述。
当然,可能还有些其他场景,这里就不做进一步介绍了。
如果您喜欢我的文章,欢迎关注微信公众号:Python数据之道(ID:PyDataRoad)
Numpy中Meshgrid函数介绍及2种应用场景的更多相关文章
- 【转】numpy中 meshgrid 和 mgrid 的区别和使用
转自:https://www.cnblogs.com/shenxiaolin/p/8854197.html 一.meshgrid函数 meshgrid函数通常使用在数据的矢量化上. 它适用于生成网格型 ...
- Python的 numpy中 meshgrid 和 mgrid 的区别和使用
一.meshgrid函数 meshgrid函数通常使用在数据的矢量化上. 它适用于生成网格型数据,可以接受两个一维数组生成两个二维矩阵,对应两个数组中所有的(x,y)对. 示例展示: 由上面的示例展示 ...
- python和numpy中sum()函数的异同
转载:https://blog.csdn.net/amuchena/article/details/89060798和https://www.runoob.com/python/python-func ...
- numpy中min函数
numpy提供的数组功能比较常用,NumPy中维数被称为轴,轴数称为秩. import numpy as np 比如a = np.array([[1, 5, 3], [4, 2, 6]]) a.min ...
- JavaScript 中的函数介绍
简而言之函数只不过是一组执行某个操作的语句.函数可能会有一些输入参数(在函数体中使用),并在执行后返回值. JavaScript函数也具有这些特性,但它们不仅仅是常规函数.JavaScript函数是对 ...
- numpy中argsort函数用法
在Python中使用help帮助 >>> import numpy >>> help(numpy.argsort) Help on function argsort ...
- numpy中tile函数
tile函数位于python模块numpy.lib.shape_base中,他的功能是重复某个数组. 函数的形式是tile(A,reps) 函数参数说明中提到A和reps都是array_like的,什 ...
- 对NumPy中dot()函数的理解
今天学习到numpy基本的运算方法,遇到了一个让我比较难理解的问题.就是dot函数是如何对矩阵进行运算的. 一.dot()的使用 参考文档:https://docs.scipy.org/doc/num ...
- 关于numpy中的函数return中加入字符串类型数据后,小数点精度变化
weekdays.pyimport numpy as npfrom datetime import datetimedef datestr2num(s): return datetime.strpti ...
随机推荐
- 带你走进SAP项目实施过程——前言(0)
欢迎关注博主的微信公众号,每天提供原创的SAP技术和项目管理新资讯! 一直很想写一些关于SAP项目管理以及实施过程的系列文章,讲述企业SAP项目从立项开始到启动,再到实施过程,直到最后的上线及总结.我 ...
- Django 学习笔记(五)模板标签
关于Django模板标签官方网址https://docs.djangoproject.com/en/1.11/ref/templates/builtins/ 1.IF标签 Hello World/vi ...
- 采用OCR识别自动识别财务报表
一. 财务报表有什么作用 财务报表又叫会计报表,包含:资产负债表.损益表.现金流量表三表.财务报表对企业经营状况有重要的参考意义: n 全面系统地揭示企业一定时期的财务状况.经营成果 ...
- 【渗透课程】第四篇-Web安全之信息探测
Web之信息探测,从这篇开始就正式进入了Web渗透实战过程了,嗯,前面都是讲基础,下面我们来讲Web中的信息探测. 信息探测,主要的目的 收集目标服务器系统信息(IP,服务器所用系统等) 收集目标网站 ...
- 线性代数-矩阵-【4】点乘 C和C++的实现
点击这里可以跳转至 [1]矩阵汇总:http://www.cnblogs.com/HongYi-Liang/p/7287369.html [2]矩阵生成:http://www.cnblogs.com/ ...
- 进程管理之system
system定义 #include<stdlib.h> int system(const char *command); 首先要知道,system函数是c库中的函数,而不是系统调用.其实s ...
- SessionStateMode之SQL Server共享session
分布式应用首先要解决的是跨域的问题,解决session.frame.cookie的跨域是最基本的,然后才是负载均衡和性能优化,上面的不解决就没法往后面进行.上一博客主要是解决了frame跨域的问题,今 ...
- Spark算子讲解(一)
1:Zip算子 def zip[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[(T, U)] 将两个RDD做zip操作,如果当两个RDD分区数目 ...
- Microsoft Dynamics 365 之 味全食品 项目分享和Customer Engagement新特性分享
味全食品 Dynamics 365项目: 在企业门户和电子商务等新营销模式频出的今天,零售业需要利用统一的管理平台管理日益庞大的客户及销售数据,整合线上线下的零售业务,从采购.仓储.生产.配送到销售. ...
- java开发网易电话面试 一面总结
晚上八点多自己在看视频的时候突然接到杭州来的一个电话,当时觉得很奇怪,突兀,接通之后被告知是杭州网易打来的,没有简单的自我介绍,没有多余的废话,直接入主题,吓得我心里怪紧张的,完全没有准备,但是也没有 ...