转:http://blog.csdn.net/wangtaoking1/article/details/7308275

题意为输入若干种立方体(每种若干个),然后将立方体堆成一个塔,要求接触的两个面下底面的长宽分别严格大于上底面,求塔的最大高度。

将每种立方体的各种摆放形式均视为不同的立方体,并存起来。再将所有立方体按照下底面的面积从小到大排序(因为在塔上面的立方体的底面积一定比下面的小),然后只需求该序列的最大上升子序列的长度即可。

#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
using namespace std; struct node //记录每个立方体的长宽高
{
int x,y,z;
void f(int a, int b,int c)
{
x=a; y=b; z=c;
}
}st[];
bool comp(node a, node b) //按立方体的底面积从小到大进行排序
{
if( a.x*a.y <b.x*b.y )
return ;
return ;
}
int n,m, x,y,z,dp[];
int main()
{
int flag =;
while( scanf("%d", &n) &&n )
{
m=;
int i,j;
for( i=; i<n; i++)
{
scanf("%d%d%d", &x, &y, &z);
st[ m++].f(x,y,z); //将6种立方体均保存起来
st[ m++].f(x,z,y);
st[ m++].f(y,z,x);
st[ m++].f(y,x,z);
st[ m++].f(z,x,y);
st[ m++].f(z,y,x);
}
sort( st, st+m, comp);
int t=;
for( i=; i<m; i++) //求最长上升子序列
{
dp[i] =st[i].z;
for( j=; j<i; j++)
if( st[i].x >st[j].x && st[i].y >st[j].y )
dp[i] =max( dp[i], dp[j] +st[i].z);
if( dp[i] >t)
t =dp[i];
}
printf("Case %d: maximum height = %d\n",flag++,t);
}
return ;
}

该方法要比紫薯上提供的方法要好的多。清晰易懂。

题意虽说有若干个立方体,但仔细想想,答案说生成的序列中最多可能包含3个同一个立方体(再仔细想想,应该是两个,但是我们还需要看成3个),故将一个立方体拓展成三个立方体即可。

将所有立方体按照下底面的面积从小到大排序(其实也可以对长度一级排序,对宽度二级排序),然后用if( st[i].x >st[j].x && st[i].y >st[j].y )  判断能否状态转移

UVa437,The Tower of Babylon的更多相关文章

  1. Uva437 The Tower of Babylon

    https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...

  2. ACM - 动态规划 - UVA437 The Tower of Babylon

    UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...

  3. [动态规划]UVA437 - The Tower of Babylon

     The Tower of Babylon  Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...

  4. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  5. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  6. POJ2241——The Tower of Babylon

    The Tower of Babylon Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2207   Accepted: 1 ...

  7. UVA437-The Tower of Babylon(动态规划基础)

    Problem UVA437-The Tower of Babylon Accept: 3648  Submit: 12532Time Limit: 3000 mSec Problem Descrip ...

  8. DAG 动态规划 巴比伦塔 B - The Tower of Babylon

    题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...

  9. HOJ 1438 The Tower of Babylon(线性DP)

    The Tower of Babylon My Tags Cancel - Seperate tags with commas. Source : University of Ulm Internal ...

随机推荐

  1. Python[小甲鱼005Python的数据类型]

    一.数值类型 整形 布尔类型        True 和 False  即1和0 浮点型 e记法                e ,例如      1.5e11 = 150000000000     ...

  2. Java课程设计----仿Windows标准型计算器

    JAVA课程设计 仿Windows标准型计算器(By Yanboooooooo) 一.团队介绍: 连燕波[组长]:网络1513学生. 张文博[组员]:网络1513学生. 二.项目git地址 码云项目地 ...

  3. 201521123106 《Java程序设计》第9周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 常用异常 题目5-1 1.1 截图你的提交结果(出现学号) 1.2 自己以前 ...

  4. 201521123048 《java程序设计》 第11周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 互斥访问与同步访问 完成题集4-4(互斥访问)与4-5(同步访问) 1. ...

  5. 201521123115《Java程序设计》第14周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多数据库相关内容. 2. 书面作业 1. MySQL数据库基本操作 建立数据库,将自己的姓名.学号作为一条记录插入.(截图,需出现自 ...

  6. Ansible系列(一):基本配置和使用

    本文目录:1.1 安装Ansible1.2 配置Ansible 1.2.1 环境配置 1.2.2 SSH互信配置 1.2.3 简单测试1.3 inventory Ansible是一种批量.自动部署工具 ...

  7. 浅谈SQL优化入门:3、利用索引

    0.写在前面的话 关于索引的内容本来是想写的,大概收集了下资料,发现并没有想象中的简单,又不想总结了,纠结了一下,决定就大概写点浅显的,好吧,就是懒,先挖个浅坑,以后再挖深一点.最基本的使用很简单,直 ...

  8. 常见注入手法第二讲,APC注入

    常见注入手法第二讲,APC注入 转载注明出处 首先,我们要了解下什么是APC APC 是一个简称,具体名字叫做异步过程调用,我们看下MSDN中的解释,异步过程调用,属于是同步对象中的函数,所以去同步对 ...

  9. 关于IOS的屏幕适配(iPhone)——Auto Layout和Size Classes

    Auto Layout和Size Classes搭配使用极大的方便了开发者,具体如何使用Auto Layout和Size Classes大家可以参考其他文章或者书籍,这里只提一点,在我们设置Size ...

  10. DOM中document对象的常用属性方法

    每个载入浏览器的 HTML 文档都会成为 Document 对象. Document 对象使我们可以从脚本中对 HTML 页面中的所有元素进行访问. 属性 1  document.anchors  返 ...