usaco training 4.2.2 The Perfect Stall 最佳牛栏 题解
The Perfect Stall题解
Hal Burch
Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls,
but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and,
of course, a cow may be only assigned to one stall.
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
PROGRAM NAME: stall4
INPUT FORMAT
| Line 1: | One line with two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. |
| Line 2..N+1: | N lines, each corresponding to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow. |
OUTPUT FORMAT
A single line with a single integer, the maximum number of milk-producing stall assignments that can be made.
描述
农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术。不幸的是,由于工程问题,每个牛栏都不一样。第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们喜欢的那些牛栏中产奶。上个星期,农夫约翰刚刚收集到了奶牛们的爱好的信息(每头奶牛喜欢在哪些牛栏产奶)。一个牛栏只能容纳一头奶牛,当然,一头奶牛只能在一个牛栏中产奶。
给出奶牛们的爱好的信息,计算最大分配方案。
[编辑]格式
PROGRAM NAME: stall4
INPUT FORMAT:
(file stall4.in)
第一行 两个整数,N (0 <= N <= 200) 和 M (0 <= M <= 200) 。N 是农夫约翰的奶牛数量,M 是新牛棚的牛栏数量。
第二行到第N+1行 一共 N 行,每行对应一只奶牛。第一个数字 (Si) 是这头奶牛愿意在其中产奶的牛栏的数目 (0 <= Si <= M)。后面的 Si 个数表示这些牛栏的编号。牛栏的编号限定在区间 (1..M) 中,在同一行,一个牛栏不会被列出两次。
OUTPUT FORMAT:
(file stall4.out)
只有一行。输出一个整数,表示最多能分配到的牛栏的数量.
[编辑]SAMPLE
INPUT
5 5 2 2 5 3 2 3 4 2 1 5 3 1 2 5 1 2
[编辑]SAMPLE
OUTPUT
4
-------------------------------------------------分割线---------------------------------------------------
周围一群大牛说是二分图的最大匹配,于是匈牙利算法应声而出。
然而我对这短小精悍的程序抱有一丝怀疑。以下为代码:
#include<iostream>
#include<cstring>
using namespace std;
int map[105][105];
int visit[105],flag[105];
int n,m;
bool dfs(int a) {
for(int i=1;i<=n;i++) {
if(map[a][i] && !visit[i]) {
visit[i]=1;
if(flag[i]==0 || dfs(flag[i])) {
flag[i]=a;
return true;
}
}
}
return false;
}
int main() {
while(cin>>n>>m) {
memset(map,0,sizeof(map));
for(int i=1;i<=m;i++) {
int x,y;
cin>>x>>y;
map[x][y]=1;
}
memset(flag,0,sizeof(flag));
int result=0;
for(int i=1;i<=n;i++) {
memset(visit,0,sizeof(visit));
if(dfs(i)) result++;
}
cout<<result<<endl;
}
return 0;
}
正当我再研究这神奇的算法时,LGS大神路过#$%@^&*。
在他的指导下,我学会了用网络流(呵呵,也是现学的,dinic不太会)来构建这种二分图的匹配。
我们设左侧蓝点是牛,右侧红点是待匹配的牛栏。
那么我们虚设一个源点和汇点,并且设每条边(包括和源点、汇点相连的边)的权是1.
我们从源点出发,求出去汇点的最大流,那么这个最大流一定是最佳匹配。
以下是代码:(这个网络流模板我是用bfs写的)
/*
PROG:stall4
ID:juan1973
LANG:C++
*/
#include <cstdio>
#include <algorithm>
#include <memory.h>
using namespace std;
int n,m,tot,flow,cnt,aug,v,p,q,i,j,u;
int map[505][505],queue[20005],pre[505];
int main()
{
freopen("stall4.in","r",stdin);
freopen("stall4.out","w",stdout);
memset(map,0,sizeof(map));
scanf("%ld%ld",&n,&m);
for(i=1;i<=n;i++)
{
scanf("%ld",&p);
for (j=1;j<=p;j++)
{
scanf("%ld",&q);
map[i][q+n]=1;
}
}
flow=0;cnt=n+m+1;
for (i=1;i<=n;i++) map[0][i]=1;
for (i=n+1;i<=m+n;i++) map[i][cnt]=1;
memset(queue,0,sizeof(queue));
while(1)
{
memset(pre,-1,sizeof(pre));
queue[1]=0;
for(p=1,q=1;p<=q;p++)
{
u=queue[p];
for(v=1;v<=cnt;v++)
if(pre[v]<0&&map[u][v]>0)
{
pre[v]=u;
queue[++q]=v;
}
if(pre[cnt]>=0)break;
}
if(pre[cnt]<0)break;
aug=2000000000;
for(v=cnt;v!=0;v=pre[v])aug=min(aug,map[pre[v]][v]);
for(v=cnt;v!=0;v=pre[v])
{
map[pre[v]][v]-=aug;
map[v][pre[v]]+=aug;
}
flow+=aug;
}
printf("%ld\n",flow);
return 0;
}
usaco training 4.2.2 The Perfect Stall 最佳牛栏 题解的更多相关文章
- USACO Section 4.2 The Perfect Stall(二分图匹配)
二分图的最大匹配.我是用最大流求解.加个源点s和汇点t:s和每只cow.每个stall和t 连一条容量为1有向边,每只cow和stall(that the cow is willing to prod ...
- USACO 4.2 The Perfect Stall(二分图匹配匈牙利算法)
The Perfect StallHal Burch Farmer John completed his new barn just last week, complete with all the ...
- POJ1274 The Perfect Stall[二分图最大匹配]
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
- poj 1247 The Perfect Stall 裸的二分匹配,但可以用最大流来水一下
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16396 Accepted: 750 ...
- POJ1274 The Perfect Stall
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25739 Accepted: 114 ...
- POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
- poj 1274 The Perfect Stall (二分匹配)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17768 Accepted: 810 ...
- poj——1274 The Perfect Stall
poj——1274 The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25709 A ...
- poj —— 1274 The Perfect Stall
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26274 Accepted: 116 ...
随机推荐
- 由12306.cn谈谈网站性能技术
12306.cn网站挂了,被全国人民骂了.我这两天也在思考这个事,我想以这个事来粗略地和大家讨论一下网站性能的问题.因为仓促,而且完全基于本人有 限的经验和了解,所以,如果有什么问题还请大家一起讨论和 ...
- iOS系统原生 二维码的生成、扫描和读取(高清、彩色)
由于近期工作中遇到了个需求:需要将一些固定的字段 在多个移动端进行相互传输,所以就想到了 二维码 这个神奇的东东! 现在的大街上.连个摊煎饼的大妈 都有自己的二维码来让大家进行扫码支付.可见现在的二维 ...
- Java 8 新特性1-函数式接口
Java 8 新特性1-函数式接口 (原) Lambda表达式基本结构: (param1,param2,param3) -> {代码块} 例1: package com.demo.jdk8; i ...
- 网络编程应用:基于UDP协议【实现聊天程序】--练习
要求: 使用UDP协议实现一个聊天程序 代码: 发送端: package UDP聊天程序; import java.io.IOException; import java.net.DatagramPa ...
- IBM WebSphere ESB入门指南
[TOC] 第一章 ESB介绍 本博客介绍一款ESB产品,IBM WebSphere ESB.ESB(Enterprise Service Bus)也即企业服务总线.ESB有很多产品,IBM的IBM ...
- js编写简单的贪吃蛇游戏
css代码 *{ margin:; padding:; } td{ width: 4px; height: 4px; background: #ccc; border: 2px solid #ccc; ...
- dotnet 命令实战
以下用实例串起dotnet所有命令,带你玩转dotnet命令. 1.创建(dotnet new) 首先我们创建一个项目,这里我们创建控制台程序,命令如下图所示. dotnet new dotnet n ...
- 移动端设置fixed布局的问题解决
最近写移动端,遇到一个问题就是用fixed属性布局的时候由于手机的原因会出现很多问题,比如说手机端底部固定一块,然后里面有输入框,(类似于手机QQ或者微信底部的输入框一样的布局)这个时候在调用软键盘的 ...
- mailto调用本地默认客户端发邮件
下面介绍如何利用 Mailto功能: 实现 Mailto的基本html代码: <a href="mailto:123@qq.com">点击这里发邮件!</a> ...
- [codeforces167B]Wizards and Huge Prize
B. Wizards and Huge Prize time limit per test: 2 seconds memory limit per test: 256 megabytes input: ...