usaco training 4.2.2 The Perfect Stall 最佳牛栏 题解
The Perfect Stall题解
Hal Burch
Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls,
but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and,
of course, a cow may be only assigned to one stall.
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
PROGRAM NAME: stall4
INPUT FORMAT
| Line 1: | One line with two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. |
| Line 2..N+1: | N lines, each corresponding to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow. |
OUTPUT FORMAT
A single line with a single integer, the maximum number of milk-producing stall assignments that can be made.
描述
农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术。不幸的是,由于工程问题,每个牛栏都不一样。第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们喜欢的那些牛栏中产奶。上个星期,农夫约翰刚刚收集到了奶牛们的爱好的信息(每头奶牛喜欢在哪些牛栏产奶)。一个牛栏只能容纳一头奶牛,当然,一头奶牛只能在一个牛栏中产奶。
给出奶牛们的爱好的信息,计算最大分配方案。
[编辑]格式
PROGRAM NAME: stall4
INPUT FORMAT:
(file stall4.in)
第一行 两个整数,N (0 <= N <= 200) 和 M (0 <= M <= 200) 。N 是农夫约翰的奶牛数量,M 是新牛棚的牛栏数量。
第二行到第N+1行 一共 N 行,每行对应一只奶牛。第一个数字 (Si) 是这头奶牛愿意在其中产奶的牛栏的数目 (0 <= Si <= M)。后面的 Si 个数表示这些牛栏的编号。牛栏的编号限定在区间 (1..M) 中,在同一行,一个牛栏不会被列出两次。
OUTPUT FORMAT:
(file stall4.out)
只有一行。输出一个整数,表示最多能分配到的牛栏的数量.
[编辑]SAMPLE
INPUT
5 5 2 2 5 3 2 3 4 2 1 5 3 1 2 5 1 2
[编辑]SAMPLE
OUTPUT
4
-------------------------------------------------分割线---------------------------------------------------
周围一群大牛说是二分图的最大匹配,于是匈牙利算法应声而出。
然而我对这短小精悍的程序抱有一丝怀疑。以下为代码:
#include<iostream>
#include<cstring>
using namespace std;
int map[105][105];
int visit[105],flag[105];
int n,m;
bool dfs(int a) {
for(int i=1;i<=n;i++) {
if(map[a][i] && !visit[i]) {
visit[i]=1;
if(flag[i]==0 || dfs(flag[i])) {
flag[i]=a;
return true;
}
}
}
return false;
}
int main() {
while(cin>>n>>m) {
memset(map,0,sizeof(map));
for(int i=1;i<=m;i++) {
int x,y;
cin>>x>>y;
map[x][y]=1;
}
memset(flag,0,sizeof(flag));
int result=0;
for(int i=1;i<=n;i++) {
memset(visit,0,sizeof(visit));
if(dfs(i)) result++;
}
cout<<result<<endl;
}
return 0;
}
正当我再研究这神奇的算法时,LGS大神路过#$%@^&*。
在他的指导下,我学会了用网络流(呵呵,也是现学的,dinic不太会)来构建这种二分图的匹配。
我们设左侧蓝点是牛,右侧红点是待匹配的牛栏。
那么我们虚设一个源点和汇点,并且设每条边(包括和源点、汇点相连的边)的权是1.
我们从源点出发,求出去汇点的最大流,那么这个最大流一定是最佳匹配。
以下是代码:(这个网络流模板我是用bfs写的)
/*
PROG:stall4
ID:juan1973
LANG:C++
*/
#include <cstdio>
#include <algorithm>
#include <memory.h>
using namespace std;
int n,m,tot,flow,cnt,aug,v,p,q,i,j,u;
int map[505][505],queue[20005],pre[505];
int main()
{
freopen("stall4.in","r",stdin);
freopen("stall4.out","w",stdout);
memset(map,0,sizeof(map));
scanf("%ld%ld",&n,&m);
for(i=1;i<=n;i++)
{
scanf("%ld",&p);
for (j=1;j<=p;j++)
{
scanf("%ld",&q);
map[i][q+n]=1;
}
}
flow=0;cnt=n+m+1;
for (i=1;i<=n;i++) map[0][i]=1;
for (i=n+1;i<=m+n;i++) map[i][cnt]=1;
memset(queue,0,sizeof(queue));
while(1)
{
memset(pre,-1,sizeof(pre));
queue[1]=0;
for(p=1,q=1;p<=q;p++)
{
u=queue[p];
for(v=1;v<=cnt;v++)
if(pre[v]<0&&map[u][v]>0)
{
pre[v]=u;
queue[++q]=v;
}
if(pre[cnt]>=0)break;
}
if(pre[cnt]<0)break;
aug=2000000000;
for(v=cnt;v!=0;v=pre[v])aug=min(aug,map[pre[v]][v]);
for(v=cnt;v!=0;v=pre[v])
{
map[pre[v]][v]-=aug;
map[v][pre[v]]+=aug;
}
flow+=aug;
}
printf("%ld\n",flow);
return 0;
}
usaco training 4.2.2 The Perfect Stall 最佳牛栏 题解的更多相关文章
- USACO Section 4.2 The Perfect Stall(二分图匹配)
二分图的最大匹配.我是用最大流求解.加个源点s和汇点t:s和每只cow.每个stall和t 连一条容量为1有向边,每只cow和stall(that the cow is willing to prod ...
- USACO 4.2 The Perfect Stall(二分图匹配匈牙利算法)
The Perfect StallHal Burch Farmer John completed his new barn just last week, complete with all the ...
- POJ1274 The Perfect Stall[二分图最大匹配]
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
- poj 1247 The Perfect Stall 裸的二分匹配,但可以用最大流来水一下
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16396 Accepted: 750 ...
- POJ1274 The Perfect Stall
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25739 Accepted: 114 ...
- POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
- poj 1274 The Perfect Stall (二分匹配)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17768 Accepted: 810 ...
- poj——1274 The Perfect Stall
poj——1274 The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25709 A ...
- poj —— 1274 The Perfect Stall
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26274 Accepted: 116 ...
随机推荐
- Linux如何安装VMware Tools
第一步:安装VMware Tools 桌面上会出现一个光盘,并且会弹出一个框框,里面是VMware Tools的安装包,将其拖到桌面上 就像下面这样 进入终端,将文件拷贝到/tmp目录下面,并解压(也 ...
- swfit - 实现类似今日头条顶部标签和底部内容的动态解决方案
TYPageView TYPageView 类似今日头条 的标签导航解决方案,支持多种样式选择,基于swift3.0,支持文字颜色动态变化,底部选中线的动态变化 配图: 使用方法: let title ...
- Quartz.net 定时任务之Cron表达式
一.cron表达式简单介绍和下载 1.在上一篇博客"Quartz.net 定时任务之简单任务"中,我简单介绍了quartz的使用,而这篇博客我将介绍cron的具体使用(不足之处望大 ...
- Ajax02 json
1 什么是json JavaScript Object Notation(JavaScript 对象表示法) 是一种轻量级的数据交换格式. 注: 数据交换:将数据先转换成一种与平台无关的数据 格式(比 ...
- angularjs里重要的route
写一段代码来解释吧! <!DOCTYPE html><html ng-app="mainApp"><head lang="en"& ...
- Building [Security] Dashboards w/R & Shiny + shinydashboard(转)
Jay & I cover dashboards in Chapter 10 of Data-Driven Security (the book) but have barely mentio ...
- JavaScript实现单击全选 ,再次点击取消全选
以下为实现思路,已测试,供参考 var allSet = document.getElementById('allSet');//获取全选按钮元素 var a = allSe ...
- java控件之树形结构JTree
import javax.swing.JFrame; import javax.swing.JTree; import javax.swing.event.TreeSelectionEvent; im ...
- 【论文:麦克风阵列增强】Microphone Array Post-Filtering For Non-Stationary Noise Suppression
作者:桂. 时间:2017-06-08 08:01:41 链接:http://www.cnblogs.com/xingshansi/p/6957027.html 原文链接:http://pan.ba ...
- ZooKeeper数据模型
ZooKeeper有一个分层的命名空间,类似分布式文件系统.它们唯一的区别就在于在命名空间中每个节点可以有数据关联作为它们的子节点.这就像有一个文件系统允许文件也作为文件目录.节点路径通常表示为规范的 ...