R语言快速深度学习进行回归预测(转)
深度学习在过去几年,由于卷积神经网络的特征提取能力让这个算法又火了一下,其实在很多年以前早就有所出现,但是由于深度学习的计算复杂度问题,一直没有被广泛应用。
一般的,卷积层的计算形式为:

其中、x分别表示当前卷积层中第j个特征、前一层的第i个特征;k表示当前层的第j个特征与前一层的第i个特征之间的卷积核;M表示需要卷积的前一层的特征的集合,b表示当前卷积层中第j个卷积核对应的偏置。f为激活函数。
卷积层中的权值与阈值通过随机梯度下降法得到:

式中,a为学习率。
损失函数对卷积层参数的梯度可通过链式求导来得到,如下:

式中,
表示前一层的梯度。
卷积神经网络中的激活函数有多种形式:

式中a为固定的参数。

式中
,每个batch训练样本中的都随机采样自均值分布,在测试中取
。

从上述卷积神经网络看出,学习过程中需要进行梯度迭代,真正在实现工业检测等实际应用时时间复杂度极高,因此学术界进行了优化,优化后的一种单层神经网络极限学习机解决了此问题,在过去应用十分广泛。
为解决上述问题,出现了极限学习机。
用最小二乘法解决的一种特殊结果为,等价为一种矩阵求逆的形式

为的Moore-Penrose广义逆。
1)由于极限学习机求取权值的时候只是计算一个广义逆,因此训练速度比基于梯度的学习算法快很多;
2)基于梯度的学习算法存在很多问题,比如学习速率难以确定、局部网络最小化等,极限学习机有效的改善了此类问题,在分类过程中取得了更好的效果;
3)与其他神经网络算法不同,极限学习机在训练过程中,选择激活函数过程中可以选择不可微函数。;
4)极限学习机算法训练过程并不复杂。极限学习机只需要三步就可以完成整个的学习过程。
以下用R代码讲解一下极限学习机
###训练过程如下:
训练过程4步即可。
elmtrain.default <-
function(x,y,nhid,actfun,...) {
require(MASS)
if(nhid < 1) stop("ERROR: number of hidden neurons must be >= 1")
########1.选择数据,X与Y
T <- t(y)
P <- t(x)
########2.随机产生权值,目的在于将X值进行变化
inpweight <- randomMatrix(nrow(P),nhid,-1,1)
tempH <- inpweight %*% P
biashid <- runif(nhid,min=-1,max=1)
biasMatrix <- matrix(rep(biashid, ncol(P)), nrow=nhid, ncol=ncol(P), byrow = F)
tempH = tempH + biasMatrix
########3.将变化后的X值进行高维映射,最常用是sig函数
if(actfun == "sig") H = 1 / (1 + exp(-1*tempH))
else {
if(actfun == "sin") H = sin(tempH)
else {
if(actfun == "radbas") H = exp(-1*(tempH^2))
else {
if(actfun == "hardlim") H = hardlim(tempH)
else {
if(actfun == "hardlims") H = hardlims(tempH)
else {
if(actfun == "satlins") H = satlins(tempH)
else {
if(actfun == "tansig") H = 2/(1+exp(-2*tempH))-1
else {
if(actfun == "tribas") H = tribas(tempH)
else {
if(actfun == "poslin") H = poslin(tempH)
else {
if(actfun == "purelin") H = tempH
else stop(paste("ERROR: ",actfun," is not a valid activation function.",sep=""))
}
}
}
}
}
}
}
}
}
########4.拟合出模型系数,即Y=AX中的A
outweight <- ginv(t(H), tol = sqrt(.Machine$double.eps)) %*% t(T)
Y <- t(t(H) %*% outweight)
model = list(inpweight=inpweight,biashid=biashid,outweight=outweight,actfun=actfun,nhid=nhid,predictions=t(Y))
model$fitted.values <- t(Y)
model$residuals <- y - model$fitted.values
model$call <- match.call()
class(model) <- "elmNN"
model
}
测试过程,过程4步即可。
function (object, newdata = NULL, ...)
{
if (is.null(newdata))
predictions <- fitted(object)
else {
if (!is.null(object$formula)) {
x <- model.matrix(object$formula, newdata)
}
else {
x <- newdata
}
########1.获取训练模型中的参数
inpweight <- object$inpweight
biashid <- object$biashid
outweight <- object$outweight
actfun <- object$actfun
nhid <- object$nhid
TV.P <- t(x)
########2.通过参数将X值进行变化
tmpHTest = inpweight %*% TV.P
biasMatrixTE <- matrix(rep(biashid, ncol(TV.P)), nrow = nhid,
ncol = ncol(TV.P), byrow = F)
tmpHTest = tmpHTest + biasMatrixTE
########3.高维度映射,通常选择sig函数
if (actfun == "sig")
HTest = 1/(1 + exp(-1 * tmpHTest))
else {
if (actfun == "sin")
HTest = sin(tmpHTest)
else {
if (actfun == "radbas")
HTest = exp(-1 * (tmpHTest^2))
else {
if (actfun == "hardlim")
HTest = hardlim(tmpHTest)
else {
if (actfun == "hardlims")
HTest = hardlims(tmpHTest)
else {
if (actfun == "satlins")
HTest = satlins(tmpHTest)
else {
if (actfun == "tansig")
HTest = 2/(1 + exp(-2 * tmpHTest)) -
1
else {
if (actfun == "tribas")
HTest = tribas(tmpHTest)
else {
if (actfun == "poslin")
HTest = poslin(tmpHTest)
else {
if (actfun == "purelin")
HTest = tmpHTest
else stop(paste("ERROR: ", actfun,
" is not a valid activation function.",
sep = ""))
}
}
}
}
}
}
}
}
}
########4.进行预测的值计算,即Y(预测)=AX
TY = t(t(HTest) %*% outweight)
predictions <- t(TY)
}
predictions
}
通过R讲述了极限学习机的内部构造,以下是R自带的示例:通过极限学习机预测
library(elmNN)
set.seed(1234)
Var1 <- runif(50, 0, 100)
sqrt.data <- data.frame(Var1, Sqrt=sqrt(Var1))
model <- elmtrain.formula(Sqrt~Var1, data=sqrt.data, nhid=10, actfun="sig")
new <- data.frame(Sqrt=0,Var1 = runif(50,0,100))
p <- predict(model,newdata=new)
转自:https://ask.hellobi.com/blog/Zason/4543
R语言快速深度学习进行回归预测(转)的更多相关文章
- 极限学习机︱R语言快速深度学习进行回归预测
本文转载于张聪的博客,链接:https://ask.hellobi.com/blog/zason/4543. 深度学习在过去几年,由于卷积神经网络的特征提取能力让这个算法又火了一下,其实在很多年以前早 ...
- 碎片︱R语言与深度学习
笔者:受alphago影响,想看看深度学习,但是其在R语言中的应用包可谓少之又少,更多的是在matlab和python中或者是调用.整理一下目前我看到的R语言的材料: ---------------- ...
- R语言︱H2o深度学习的一些R语言实践——H2o包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...
- MxNet+R︱用R语言实现深度学习(单CPU/API接口,一)
MxNet有了亚马逊站台之后,声势大涨,加之接口多样化,又支持R语言所以一定要学一下.而且作为R语言的fans,为啥咱们R语言就不能上深度学习嘞~ -------------------------- ...
- R语言书籍的学习路线图
现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑 ...
- R语言与机器学习学习笔记
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自 ...
- R语言网络爬虫学习 基于rvest包
R语言网络爬虫学习 基于rvest包 龙君蛋君:2015年3月26日 1.背景介绍: 前几天看到有人写了一篇用R爬虫的文章,感兴趣,于是自己学习了.好吧,其实我和那篇文章R语言爬虫初尝试-基于RVES ...
- R语言与显著性检验学习笔记
R语言与显著性检验学习笔记 一.何为显著性检验 显著性检验的思想十分的简单,就是认为小概率事件不可能发生.虽然概率论中我们一直强调小概率事件必然发生,但显著性检验还是相信了小概率事件在我做的这一次检验 ...
- R语言函数化学习笔记6
R语言函数化学习笔记 1.apply函数 可以让list或者vector的元素依次执行一遍调用的函数,输出的结果是list格式 2.sapply函数 原理和list一样,但是输出的结果是一个向量的形式 ...
随机推荐
- ES6 深入let的作用域
说到ES6的let变量声明,我估计很多人会想起下面几个主要的特点: 没有变量声明提升 拥有块级作用域 暂时死区 不能重复声明 很多教程和总结基本都说到了这几点(说实话大部分文章都大同小异,摘录的居多) ...
- iOS原生地图与高德地图的使用
原生地图 1.什么是LBS LBS: 基于位置的服务 Location Based Service 实际应用:大众点评,陌陌,微信,美团等需要用到地图或定位的App 2.定位方式 1.GPS定位 2. ...
- LINQ TO XML初步了解
最近简单的学习了一下LINT TO XML,写篇博客在这,方便以后查看~~ 1.常用到的类 XmlDocument -- 文档(xml文件) XmlElement -- ...
- 第一次在gitHub上传项目到git.oschina的方法
首先在Git@osChina创建一个项目仓库 1.创建sshKey公钥 ssh-keygen -t rsa -C "ty635725964@qq.com" 之后连续三个空格,默认无 ...
- webService基础知识--认识WebService
之前在找工作的时候,有面试官问到WebService,当时没有接触过,正好现在做的项目中有用到WebService,所以就趁着业余时间来学习了. 一.简介 先来看看百度百科对WebService的解释 ...
- 经验分享:如何用grep对PHP进行代码审计
这是一个常见的误解- 企业需要购买复杂和昂贵的软件来发现应用程序中安全漏洞:而这些专门的软件应用程序,无论是黑盒或白盒,开源或商业,都能很快的发现安全漏洞. 事实是:所有这些专业的漏洞扫描工具都有其特 ...
- 「七天自制PHP框架」第二天:模型与数据库
往期回顾:「七天自制PHP框架」第一天:路由与控制器,点击此处 什么是模型? 我们的WEB系统一定会和各种数据打交道,实际开发过程中,往往一个类对应了关系数据库的一张或多张数据表,这里就会出现两个问题 ...
- flex布局下,css设置文本不换行时,省略号不显示的解决办法
大致是有一个main容器是flex布局,左边一个logo固定宽高,右边content动态宽度. <div class="main"> <img alt=" ...
- 学好php可以做的事情真多!
学好php能做什么?其实学好php能做的事情很多! 一. 学好php可以就业 1:大中小公司通吃. 现在几乎所有有前途的公司都会在互联网上安家.只要在网上安家,就需要找这些方面的技术人员,而且很多公司 ...
- 取消input默认样式
有时候input在页面中被聚焦后会出现默认的边框样式,可以通过以下方法取消去除 .input:focus{ outline: none;}