DFS

https://github.com/Premiumlab/Python-for-Algorithms--Data-Structures--and-Interviews/blob/master/Graphs/Implementation%20of%20Depth%20First%20Search.ipynb

https://leetcode.com/problems/binary-tree-paths/#/solutions

Nodes and References Implementation of a Tree

class BinaryTree(object):
def __init__(self,rootObj):
self.key = rootObj
self.leftChild = None
self.rightChild = None def insertLeft(self,newNode):
if self.leftChild == None:
self.leftChild = BinaryTree(newNode)
else:
t = BinaryTree(newNode)
t.leftChild = self.leftChild
self.leftChild = t def insertRight(self,newNode):
if self.rightChild == None:
self.rightChild = BinaryTree(newNode)
else:
t = BinaryTree(newNode)
t.rightChild = self.rightChild
self.rightChild = t def getRightChild(self):
return self.rightChild def getLeftChild(self):
return self.leftChild def setRootVal(self,obj):
self.key = obj def getRootVal(self):
return self.key

Implementation of Depth-First Search

This algorithm we will be discussing is Depth-First search which as the name hints at, explores possible vertices (from a supplied root) down each branch before backtracking. This property allows the algorithm to be implemented succinctly in both iterative and recursive forms. Below is a listing of the actions performed upon each visit to a node.

  • Mark the current vertex as being visited.
  • Explore each adjacent vertex that is not included in the visited set.

We will assume a simplified version of a graph in the following form:

graph = {'A': set(['B', 'C']),
'B': set(['A', 'D', 'E']),
'C': set(['A', 'F']),
'D': set(['B']),
'E': set(['B', 'F']),
'F': set(['C', 'E'])}

Connected Component

The implementation below uses the stack data-structure to build-up and return a set of vertices that are accessible within the subjects connected component. Using Python’s overloading of the subtraction operator to remove items from a set, we are able to add only the unvisited adjacent vertices.

def dfs(graph, start, visited=None):
if visited is None:
visited = set()
visited.add(start)
for nxt in graph[start] - visited:
dfs(graph, nxt, visited)
return visited dfs(graph, 'A')
{'A', 'B', 'C', 'D', 'E', 'F'}

 

The second implementation provides the same functionality as the first, however, this time we are using the more succinct recursive form. Due to a common Python gotcha with default parameter values being created only once, we are required to create a new visited set on each user invocation. Another Python language detail is that function variables are passed by reference, resulting in the visited mutable set not having to reassigned upon each recursive call.

def dfs(graph, start, visited=None):
if visited is None:
visited = set()
visited.add(start)
for nxt in graph[start] - visited:
dfs(graph, nxt, visited)
return visited dfs(graph, 'A')
{'A', 'B', 'C', 'D', 'E', 'F'}   

Paths

We are able to tweak both of the previous implementations to return all possible paths between a start and goal vertex. The implementation below uses the stack data-structure again to iteratively solve the problem, yielding each possible path when we locate the goal. Using a generator allows the user to only compute the desired amount of alternative paths.

def dfs_paths(graph, start, goal):
stack = [(start, [start])]
while stack:
(vertex, path) = stack.pop()
for nxt in graph[vertex] - set(path):
if nxt == goal:
yield path + [nxt]
else:
stack.append((nxt, path + [nxt])) list(dfs_paths(graph, 'A', 'F'))
[['A', 'B', 'E', 'F'], ['A', 'C', 'F']]

Implementation of Breadth First Search

An alternative algorithm called Breath-First search provides us with the ability to return the same results as DFS but with the added guarantee to return the shortest-path first. This algorithm is a little more tricky to implement in a recursive manner instead using the queue data-structure, as such I will only being documenting the iterative approach. The actions performed per each explored vertex are the same as the depth-first implementation, however, replacing the stack with a queue will instead explore the breadth of a vertex depth before moving on. This behavior guarantees that the first path located is one of the shortest-paths present, based on number of edges being the cost factor.

We'll assume our Graph is in the form:

graph = {'A': set(['B', 'C']),
'B': set(['A', 'D', 'E']),
'C': set(['A', 'F']),
'D': set(['B']),
'E': set(['B', 'F']),
'F': set(['C', 'E'])}

Connected Component

Similar to the iterative DFS implementation the only alteration required is to remove the next item from the beginning of the list structure instead of the stacks last.

def bfs(graph, start):
visited, queue = set(), [start]
while queue:
vertex = queue.pop(0)
if vertex not in visited:
visited.add(vertex)
queue.extend(graph[vertex] - visited)
return visited bfs(graph, 'A')
{'A', 'B', 'C', 'D', 'E', 'F'}
 

Paths

This implementation can again be altered slightly to instead return all possible paths between two vertices, the first of which being one of the shortest such path.

def bfs_paths(graph, start, goal):
queue = [(start, [start])]
while queue:
(vertex, path) = queue.pop(0)
for next in graph[vertex] - set(path):
if next == goal:
yield path + [next]
else:
queue.append((next, path + [next])) list(bfs_paths(graph, 'A', 'F'))
[['A', 'C', 'F'], ['A', 'B', 'E', 'F']]
 

Knowing that the shortest path will be returned first from the BFS path generator method we can create a useful method which simply returns the shortest path found or ‘None’ if no path exists. As we are using a generator this in theory should provide similar performance results as just breaking out and returning the first matching path in the BFS implementation.

def shortest_path(graph, start, goal):
try:
return next(bfs_paths(graph, start, goal))
except StopIteration:
return None shortest_path(graph, 'A', 'F')
['A', 'C', 'F']
												

DFS and BFS的更多相关文章

  1. Clone Graph leetcode java(DFS and BFS 基础)

    题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...

  2. 数据结构(12) -- 图的邻接矩阵的DFS和BFS

    //////////////////////////////////////////////////////// //图的邻接矩阵的DFS和BFS ////////////////////////// ...

  3. 数据结构(11) -- 邻接表存储图的DFS和BFS

    /////////////////////////////////////////////////////////////// //图的邻接表表示法以及DFS和BFS //////////////// ...

  4. 在DFS和BFS中一般情况可以不用vis[][]数组标记

    开始学dfs 与bfs 时一直喜欢用vis[][]来标记有没有访问过, 现在我觉得没有必要用vis[][]标记了 看代码 用'#'表示墙,'.'表示道路 if(所有情况都满足){ map[i][j]= ...

  5. 图论中DFS与BFS的区别、用法、详解…

    DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...

  6. 图论中DFS与BFS的区别、用法、详解?

    DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...

  7. 数据结构基础(21) --DFS与BFS

    DFS 从图中某个顶点V0 出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和V0有路径相通的顶点都被访问到(使用堆栈). //使用邻接矩阵存储的无向图的深度 ...

  8. dfs和bfs的区别

    详见转载博客:https://www.cnblogs.com/wzl19981116/p/9397203.html 1.dfs(深度优先搜索)是两个搜索中先理解并使用的,其实就是暴力把所有的路径都搜索 ...

  9. 邻接矩阵实现图的存储,DFS,BFS遍历

    图的遍历一般由两者方式:深度优先搜索(DFS),广度优先搜索(BFS),深度优先就是先访问完最深层次的数据元素,而BFS其实就是层次遍历,每一层每一层的遍历. 1.深度优先搜索(DFS) 我一贯习惯有 ...

  10. 判断图连通的三种方法——dfs,bfs,并查集

    Description 如果无向图G每对顶点v和w都有从v到w的路径,那么称无向图G是连通的.现在给定一张无向图,判断它是否是连通的. Input 第一行有2个整数n和m(0 < n,m < ...

随机推荐

  1. Unity调用Android的两个方式:其一、调用jar包

    unity在Android端开发的时候,免不了要调用Java:Unity可以通过两种方式来调用Android:一是调用jar.二是调用aar. 这篇文章主要讲解怎么从无到有的生成一个jar包,然后un ...

  2. hadoop2.8和spark2.1完全分布式搭建

    一.前期准备工作: 1.安装包的准备: VMware(10.0版本以上) : 官方网站:https://www.vmware.com/cn.html 官方下载地址:http://www.vmware. ...

  3. 1.2 N层架构

    N层架构 介绍 ABP架构 其他(通用) 领域层 应用层 基础设施层 网络和展现层 其他 总结 介绍 应用程序代码库的分层架构是被广泛认可的可以减少程序复杂度.提高代码复用率的技术.为了实现分层架构, ...

  4. 表单提交音乐文件(php)

    利用点空闲时间来写个博客,最近做的项目中需要表单提交音频的,图片的,各种类型,把它存到数据库里,这里先来说一下音乐文件的表单提交吧,后几天再来更新输入数据库的,先看一下效果 点击浏览 就会出来预览,点 ...

  5. java 无法连接ftp服务器(500 OOPS: cannot change directory)

    在使用java连接ftp服务器时可能会出现无法连接的情况,检查代码是没有错误的,这时就应该考虑一下服务器端的情况了: 首先用在本地打开命令窗口,输入:ftp ftp服务器IP,窗口会提示你输入用户名密 ...

  6. Xmind 体验分享

    Xmind 8 体验 初识思维脑图 这两天在学习使用思维脑图(xmind是其中一款软件)ing,在体验了一把思维脑图的使用后,深深感受到了脑洞大开的魔力. 从昨晚开始研究使用,到今天晚上截止,自己试着 ...

  7. Win10或Win8下ObjectARX2015 Wizard向导创建项目失败解决方法

    [原创]objectARX 2015 Wizard安装向导在Win8/win10下无法创建项目的解决方法总结by edata @2017-5-1objectARX 2015 Wizard安装向导在Wi ...

  8. JDBC连接错误(Illegal mix of collations。。。)

    连接java和mysql时出现了这样的报错: java.sql.SQLException: Illegal mix of collations (latin1_swedish_ci,IMPLICIT) ...

  9. Rabin-Karp字符串查找算法

    1.简介 暴力字符串匹配(brute force string matching)是子串匹配算法中最基本的一种,它确实有自己的优点,比如它并不需要对文本(text)或模式串(pattern)进行预处理 ...

  10. word vbs脚本 设置所有题注样式为蓝色,下划线

    Attribute VB_Name = "题注样式" Sub SetCorssRef() 'Word版,设置所有交叉引用的文本的格式 Dim aField As Word.Fiel ...