题意:求,其中d(x) 表示 x 的约数个数。

析:其实是一个公式题,要知道一个结论

知道这个结论就好办了。

然后就可以解决这个问题了,优化就是记忆化gcd。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 2000 + 1;
const int maxm = 2e4 + 10;
const int mod = 1073741824;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} bool vis[maxn];
int g[maxn][maxn], mu[maxn], prime[maxn]; void Moblus(){
mu[1] = 1; int tot = 0;
for(int i = 2; i <= n; ++i){
if(!vis[i]) prime[tot++] = i, mu[i] = -1;
for(int j = 0; j < tot; ++j){
int t = i * prime[j];
if(t > n) break;
vis[t] = 1;
if(i % prime[j] == 0) break;
mu[t] = -mu[i];
}
}
} int ggcd(int a, int b){
if(!b) return a;
if(g[a][b]) return g[a][b];
return g[a][b] = g[b][a] = gcd(b, a%b);
} int solve(int n, int d, int k){
int ans = 0;
for(int i = 1; i <= n; ++i)
if(ggcd(d*i, k) == 1) ans += n / i;
return ans;
} int main(){
int t;
scanf("%d %d %d", &n, &m, &t);
if(n > m) swap(n, m);
if(n > t) swap(n, t);
if(t > m) swap(m, t);
Moblus();
int ans = 0;
for(int i = 1; i <= t; ++i){
int tmp = 0;
for(int j = 1; j <= n; ++j) if(mu[j])
tmp += mu[j] * solve(n/j, j, i) * solve(m/j, j, i);
ans += t/i * tmp;
}
printf("%d\n", (ans%mod+mod)%mod);
return 0;
}

  

  

CodeForces 235E Number Challenge (莫比乌斯反演)的更多相关文章

  1. Codeforces 235E. Number Challenge DP

    dp(a,b,c,p) = sigma ( dp(a/p^i,b/p^j,c/p^k) * ( 1+i+j+k) ) 表示用小于等于p的素数去分解的结果有多少个 E. Number Challenge ...

  2. Codeforces 235E Number Challenge

    http://codeforces.com/contest/235/problem/E 远距离orz......rng_58 证明可以见这里(可能要FQ才能看到) 还是copy一下证明吧: 记 $$f ...

  3. Codeforces 809E Surprise me! [莫比乌斯反演]

    洛谷 Codeforces 非常套路的一道题,很适合我在陷入低谷时提升信心-- 思路 显然我们需要大力推式子. 设\(p_{a_i}=i\),则有 \[ \begin{align*} n(n-1)an ...

  4. Codeforces 915G Coprime Arrays 莫比乌斯反演 (看题解)

    Coprime Arrays 啊,我感觉我更本不会莫比乌斯啊啊啊, 感觉每次都学不会, 我好菜啊. #include<bits/stdc++.h> #define LL long long ...

  5. CF#235E. Number Challenge

    传送门 可以理解为上一道题的扩展板.. 然后我们就可以YY出这样一个式子 ${\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^cd(ijk)=\sum_{i=1}^a\sum_{ ...

  6. Codeforces.809E.Surprise me!(莫比乌斯反演 虚树)

    题目链接 \(Description\) 给定一棵树,求\[\frac{1}{n(n-1)/2}\times\sum_{i\in[1,n],j\in[1,n],i\neq j}\varphi(a_i\ ...

  7. 【codeforces 235E】 Number Challenge

    http://codeforces.com/problemset/problem/235/E (题目链接) 题意 给出${a,b,c}$,求${\sum_{i=1}^a\sum_{j=1}^b\sum ...

  8. 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演,前缀和,差分

    Coprime Arrays CodeForces - 915G Let's call an array a of size n coprime iff gcd(a1, a2, ..., *a**n) ...

  9. codeforces#1139D. Steps to One (概率dp+莫比乌斯反演)

    题目链接: http://codeforces.com/contest/1139/problem/D 题意: 在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时, ...

随机推荐

  1. elasticsearch查询语句总结

    query 和  filter 的区别请看:https://www.cnblogs.com/bainianminguo/articles/10396956.html Filter DSL term 过 ...

  2. windows+nginx+tomcat实现集群负载均衡(生产环境必读)

    概念理解(原文链接) 集群:多个tomcat服务器运行同一个web服务就能称之为集群 负载均衡:apache按照一定方式将不同的客户端访问分配到不同的tomcat服务器 简单负载均衡实现: 网上参考了 ...

  3. java 编解码

    decoder:解码--> 将文件内容转换为字符对象: encoder:编码-->将字符对象转换为字节或者字节数组: ASCII  (American Standard for Infor ...

  4. [BX]指令

    mov ax,[bx] 功能:bx中存放的数据作为一个偏移地址EA,段地址SA默认在ds中,将SA:EA处的数据送入ax中.即(ax)=((ds)*16+(bx)). mov [bx],ax 功能:b ...

  5. git查看历史操作

    在提交了若干更新,又或者克隆了某个项目之后,偶尔想回顾下过往提交历史.可以使用git log命令来实现. 最简单的查看提交历史命令如下: $ git log $ git log --oneline $ ...

  6. rviz2

    VINS-Mono ####Panels: 面板: - Class: rviz/Displays 显示1 Help Height: Name: Displays Property Tree Widge ...

  7. 汇编中CMP的作用

    假设现在AX寄存器中的数是0002H,BX寄存器中的数是0003H.执行的指令是:CMP  AX,  BX 执行这条指令时,先做用AX中的数减去BX中的数的减法运算.列出二进制运算式子:      0 ...

  8. vue2.0后台系统

    参考网址: http://www.cnblogs.com/linxin/p/6509897.html

  9. python 网络下载的三种风格 未完成

    import osimport timeimport sys import requests#依序下载POP20_CC = ('CN IN US ID BR PK NG BD RU JP' 'MX P ...

  10. const修饰符用法

    1. 将一个对象设置为不可修改 const int a = 100; 2. 指向const对象的指针 const int* p = 3;可以通过指针来修改指针所指向的值,但是不能通过指针*p修改对像的 ...