C - Chocolate Bar

题面

There is a bar of chocolate with a height of H blocks and a width of W blocks. Snuke is dividing this bar into exactly three pieces. He can only cut the bar along borders of blocks, and the shape of each piece must be a rectangle.

Snuke is trying to divide the bar as evenly as possible. More specifically, he is trying to minimize Smax - Smin, where Smax is the area (the number of blocks contained) of the largest piece, and Smin is the area of the smallest piece. Find the minimum possible value of Smax−Smin.

题意

给你一个矩形,切两刀,问怎么切面积极差最小

直接暴力枚举一下,然后旋转一下。

代码

#include<bits/stdc++.h>
using namespace std; using ll=long long;
ll h,w;
ll ans;
ll ans1;
ll ans2;
ll ans3;
ll big;
ll small; int main()
{
ios::sync_with_stdio(false); cin>>h>>w; // if (h%3==0 || w%3==0) return 0*puts("0"); ans=h*w;
for (ll i=1;i<w;i++)
{
big=small=ans1=i*h;
ans2=h/2*(w-i);
ans3=(h+1)/2*(w-i); big=max(big,ans2);
big=max(big,ans3);
small=min(small,ans2);
small=min(small,ans3); ans=min(ans,big-small);
}
for (ll i=1;i<w;i++)
{
big=small=ans1=i*h;
ans2=(w-i)/2*h;
ans3=(w-i+1)/2*h; big=max(big,ans2);
big=max(big,ans3);
small=min(small,ans2);
small=min(small,ans3); ans=min(ans,big-small);
} swap(h,w);
for (ll i=1;i<w;i++)
{
big=small=ans1=i*h;
ans2=h/2*(w-i);
ans3=(h+1)/2*(w-i); big=max(big,ans2);
big=max(big,ans3);
small=min(small,ans2);
small=min(small,ans3); ans=min(ans,big-small);
}
for (ll i=1;i<w;i++)
{
big=small=ans1=i*h;
ans2=(w-i)/2*h;
ans3=(w-i+1)/2*h; big=max(big,ans2);
big=max(big,ans3);
small=min(small,ans2);
small=min(small,ans3); ans=min(ans,big-small);
} cout<<ans;
}

D - 3N Numbers

题面

Let N be a positive integer.

There is a numerical sequence of length 3N, a=(a1,a2,…,a3N). Snuke is constructing a new sequence of length 2N, a', by removing exactly N elements from a without changing the order of the remaining elements. Here, the score of a' is defined as follows: (the sum of the elements in the first half of a')−(the sum of the elements in the second half of a').

Find the maximum possible score of a'.

题意

给你长度为3N的序列 求一长度为2N的子序列 使得前面n个减后面n个最大

代码

#include<bits/stdc++.h>
using namespace std; using ll = long long ;
int n;
ll a[300010];
ll f[300010];
ll ans;
ll ret;
priority_queue<ll> q; int main()
{
ios::sync_with_stdio(false); cin>>n;
for (int i=1;i<=3*n;i++) cin>>a[i]; for (int i=1;i<=n;i++)
{
q.push(-a[i]);
ans+=a[i];
f[i]=ans;
}
for (int i=n+1;i<=2*n;i++)
{
if (a[i]>-q.top())
{
ans+=a[i]+q.top();
q.pop();
q.push(-a[i]);
}
f[i]=ans;
} while (!q.empty()) q.pop();
ans=0;
for (int i=3*n;i>2*n;i--)
{
q.push(a[i]);
ans+=a[i];
}
ret=f[2*n]-ans;
for (int i=2*n;i>n;i--)
{
if (a[i]<q.top())
{
ans-=q.top();
ans+=a[i];
q.pop();
q.push(a[i]);
}
ret=max(ret,f[i-1]-ans);
}
cout<<ret;
}

E - RGB Sequence

题面

There are N squares arranged in a row. The squares are numbered 1, 2, …, N, from left to right.

Snuke is painting each square in red, green or blue. According to his aesthetic sense, the following M conditions must all be satisfied. The i-th condition is:

  • There are exactly xi different colors among squares li, li+1, …, ri.

In how many ways can the squares be painted to satisfy all the conditions? Find the count modulo 109+7.

题意

给出m条约束条件。问一个只有RGB的序列的方案有多少种

令dp[r][g][b]

  • r为red最后出现的位置
  • g为green最后出现的位置
  • b为blue最后出现的位置

dp[r][g][b]转移到max{r,g,b}+1的位置,枚举放rgb,然后判断是否可行。

代码

#include <bits/stdc++.h>
using namespace std; using ll = long long;
ll n;
ll m;
ll dp[305][305][305];
const ll MOD = 1e9+7; vector<pair<int, int>> v[305]; bool check(int r, int g, int b)
{
int k = max({r, b, g});
for(auto pp: v[k])
{
int ct = 0;
int l = pp.first;
if (r >= l) ct++;
if (g >= l) ct++;
if (b >= l) ct++; if (ct != pp.second) return false;
}
return true;
} int main()
{
ios::sync_with_stdio(false);
cin.tie(0); cin>>n>>m;
for (int i=0;i<m;++i)
{
int l,r,x;
cin>>l>>r>>x;
v[r].push_back({l,x});
}
dp[0][0][0]=1;
ll ret=0;
for (int r=0;r<=n;++r)
{
for (int g=0;g<=n;++g)
{
for (int b=0;b<=n;++b)
{
ll c=dp[r][g][b];
if (!c) continue; if (!check(r,g,b))
{
dp[r][g][b]=0;
continue;
} int k=max({r,g,b}) + 1;
if (k-1 == n)
{
ret+=dp[r][g][b];
ret%=MOD;
}
dp[k][g][b]+=dp[r][g][b] % MOD;
dp[r][k][b]+=dp[r][g][b] % MOD;
dp[r][g][k]+=dp[r][g][b] % MOD; }
}
}
cout<<ret; }

F - Lotus Leaves

题面

There is a pond with a rectangular shape. The pond is divided into a grid with H rows and W columns of squares. We will denote the square at the i-th row from the top and j-th column from the left by (i, j).

Some of the squares in the pond contains a lotus leaf floating on the water. On one of those leaves, S, there is a frog trying to get to another leaf T. The state of square (i, j) is given to you by a character aij, as follows:

  • . : A square without a leaf.
  • o : A square with a leaf floating on the water.
  • S : A square with the leaf S.
  • T : A square with the leaf T.

The frog will repeatedly perform the following action to get to the leaf T: "jump to a leaf that is in the same row or the same column as the leaf where the frog is currently located."

Snuke is trying to remove some of the leaves, other than S and T, so that the frog cannot get to the leaf T. Determine whether this objective is achievable. If it is achievable, find the minimum necessary number of leaves to remove.

题意

看不懂

代码

//null

比赛总结

反应好迟钝啊,B做出来已经快结束了,好在还是做出来了

有种做div1的错觉,哈哈哈哈(逃

比赛链接

http://arc074.contest.atcoder.jp/

Atcoder Regular-074 Writeup的更多相关文章

  1. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  2. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  3. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  4. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  5. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

  6. AtCoder Regular Contest 095

    AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...

  7. AtCoder Regular Contest 102

    AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...

  8. AtCoder Regular Contest 096

    AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...

  9. AtCoder Regular Contest 097

    AtCoder Regular Contest 097 C - K-th Substring 题意: 求一个长度小于等于5000的字符串的第K小子串,相同子串算一个. K<=5. 分析: 一眼看 ...

  10. AtCoder Regular Contest 098

    AtCoder Regular Contest 098 C - Attention 题意 给定一个只包含"E","W"字符串,可以花一的花费使他们互相转换.选定 ...

随机推荐

  1. spring boot 访问项目时加项目名称

    pringboot 项目一般直接地址加端口就可以访问了,不像放在tomcat里面还需要加上项目名. 现在,想访问的时候加上项目名用来区分,只要在配置文件里面加上 server.context-path ...

  2. go语言中的数组

    package main; import ( "fmt" ) func main() { //声明一个数组 var a [3]int; a = [3]int{1, 2, 3}; / ...

  3. [z]规则引擎

    https://www.ibm.com/developerworks/cn/java/j-drools/ 使用声明性编程方法编写程序的业务逻辑 使用规则引擎可以通过降低实现复杂业务逻辑的组件的复杂性, ...

  4. webapi 设置不显示接口到swaggerUI

    请添加如下属性: [ApiExplorerSettings(IgnoreApi = true)]

  5. Linux安装命令出现如下错误:cannot find a valid baseurl for repo :base/7x86_64

    今天刚回到家,在我的虚拟机上有安装了一个Linux系统,安装好之后,想要安装如下命令,yum install wget,yum install gcc,yum install vim,发现一个也没有安 ...

  6. 4. 深入 Python 流程控制

    除了前面介绍的 while 语句,Python 还从其它语言借鉴了一些流程控制功能,并有所改变. 4.1. if 语句 也许最有名的是 if 语句.例如: >>> x = int(i ...

  7. Oracle的SQL语句中如何处理‘&’符号

    ‘&’符号在SQL中有特殊含义,所以在SQL中想要写入&,需要特殊处理. 如下SQL语句就不能正确运行: SQL> select 'a&b' from dual; 处理方 ...

  8. Android.Tools.Summary

    Android平台上工具的总结 每个工具的详细使用和深入理解参考每个工具相关的blog. 1. Android SDK中提供的工具 http://developer.android.com/tools ...

  9. iOS.FileSystem.HardLinkAndSymbolicLink

    关于iOS中的硬连接和符号连接(软连接),iOS其实是Unix的变体, 所以在这方面也继承了Unix的特性,下面这个连接比较详细的进行了 类比说明. 1. http://www.tanhao.me/p ...

  10. ksort排序的依据是什么

    ksort:升序 asort:降序