题目描述

给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线。现要求找出一条满足下述限制条件的且途经城市最多的旅行路线。

  1. 从最西端城市出发,单向从西向东途经若干城市到达最东端城市,然后再单向从东向西飞回起点(可途经若干城市)。
  2. 除起点城市外,任何城市只能访问一次。

对于给定的航空图,试设计一个算法找出一条满足要求的最佳航空旅行路线。

输入格式

第一行有两个正整数 \(N\) 和 \(V\) ,\(N\) 表示城市数,\(V\) 表示直飞航线数。

接下来的 \(N\) 行中每一行是一个城市名,可乘飞机访问这些城市。城市名出现的顺序是从西向东。也就是说,设 \(i,j\) 是城市表列中城市出现的位置次序,当 \(i>j\) 时,表示 城市 \(i\) 在城市 \(j\) 的东边,而且不会有两个城市在同一条经线上。城市名是一个长度不超过 \(15\) 的字符串,串中的字符可以是大小写字母或阿拉伯数字。例如,\(\text{AGR34}\) 或 \(\text{BEL4}\) 。

再接下来的 \(V\) 行中,每行有两个城市名,中间用空格隔开,如 \(\text{city1 city2}\) 表示 \(\text{city1}\) 到 \(\text{city2}\) 有一条直通航线,从 \(\text{city2}\) 到 \(\text{city1}\) 也有一条直通航线。

输出格式

输出最佳航空旅行路线。

第一行是旅行路线中所访问的城市总数 \(M\) 。

接下来的 \(M+1\) 行是旅行路线的城市名,每行一个。首先是出发城市名,然后按访问顺序列出其它城市名。注意,最后一行(终点城市)的城市名必然是出发城市名。如果有多组最优解,输出任意一组均可;如果问题无解,则输出 No Solution!

样例

样例输入

8 9
Vancouver
Yellowknife
Edmonton
Calgary
Winnipeg
Toronto
Montreal
Halifax
Vancouver Edmonton
Vancouver Calgary
Calgary Winnipeg
Winnipeg Toronto
Toronto Halifax
Montreal Halifax
Edmonton Montreal
Edmonton Yellowknife
Edmonton Calgary

样例输出

7
Vancouver
Edmonton
Montreal
Halifax
Toronto
Winnipeg
Calgary
Vancouver

数据范围与提示

对于所有数据,N < 100

题解

来回经过不同的路径可以转化成从起点走两条不同的路径到终点

即每个点只能经过一次,所以拆点,之间的边容量为 \(1\) ,费用为 \(1\)

而起点和终点可以经过两次,所以之间的边容量为 \(2\),费用为 \(1\)

然后西边的可以向东边的连边

跑最大费用流。。。使得经过的城市数目最多

最后搜着去找经过的边就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,m,e=1,beg[MAXN],cur[MAXN],level[MAXN],clk,ans[MAXN],nt,stack[MAXN],cnt,nex[MAXM<<1],to[MAXM<<1],cap[MAXM<<1],was[MAXM<<1],p[MAXN],vis[MAXN],answas,s,t,mk;
template<typename T> inline T min(T x,T y){return (x<y?x:y);}
template<typename T> inline T max(T x,T y){return (x>y?x:y);}
struct city{
char s[20];
inline bool operator < (const city &A) const {
for(register int i=0;i<min(strlen(s),strlen(A.s));++i)
if(s[i]!=A.s[i])return s[i]<A.s[i];
return strlen(s)<strlen(A.s);
};
};
city c[MAXN],c1,c2;
std::queue<int> q;
std::map<city,int> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
inline void insert(int x,int y,int z,int k)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=k;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-k;
}
inline bool bfs()
{
memset(level,-1,sizeof(level));
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]<level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=-1;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+was[i])
{
int f=dfs(to[i],min(cap[i],maxflow));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
answas+=f*was[i];
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
inline void adfs(int x)
{
stack[++cnt]=x;
if(x==t)
{
if(!mk)
{
for(register int i=1;i<=cnt;++i)
if(stack[i]<=n)ans[++nt]=stack[i];
mk=1;
}
else
for(register int i=cnt;i>=1;--i)
if(stack[i]<n)ans[++nt]=stack[i];
}
for(register int i=beg[x];i;i=nex[i])
if(cap[i^1]&&(i&1^1))adfs(to[i]);
cnt--;
}
int main()
{
read(n);read(m);
for(register int i=1;i<=n;++i)scanf("%s",c[i].s),M[c[i]]=i;
s=1,t=n+n;
insert(1,1+n,2,1);insert(n,n+n,2,1);
for(register int i=2;i<n;++i)insert(i,i+n,1,1);
for(register int i=1;i<=m;++i)
{
scanf("%s%s",c1.s,c2.s);
int u=M[c1],v=M[c2];
if(u>v)std::swap(u,v);
insert(u+n,v,inf,0);
}
if(Dinic()!=2)puts("No Solution!");
else
{
adfs(1);
if(nt==2)write(nt,'\n'),puts(c[1].s),puts(c[n].s),puts(c[1].s);
else
{
write(nt-1,'\n');
for(register int i=1;i<=nt;++i)printf("%s\n",c[ans[i]].s);
}
}
return 0;
}

【刷题】LOJ 6122 「网络流 24 题」航空路线问题的更多相关文章

  1. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

  2. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  3. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  4. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  5. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  6. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

  7. loj #6121. 「网络流 24 题」孤岛营救问题

    #6121. 「网络流 24 题」孤岛营救问题   题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...

  8. loj #6226. 「网络流 24 题」骑士共存问题

    #6226. 「网络流 24 题」骑士共存问题   题目描述 在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上 ...

  9. [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流

    #6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

随机推荐

  1. pip安装python包出错:Could not find a version that satisfies the requirement skimage (from versions: )

    今天用pip安装skimage时报错: 这是因为网络的问题,需要使用国内的镜像源来加速,比如豆瓣源 命令改为: pip install scikit-image -i http://pypi.doub ...

  2. c# 淘宝运单查询

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  3. 20155206赵飞 Exp1PC平台逆向破解及Bof基础实践

    实验一 逆向及Bof基础 1.掌握NOP, JNE, JE, JMP, CMP汇编指令的机器码 NOP汇编指令的机器码是"90" JNE汇编指令的机器码是"75" ...

  4. 20155313 杨瀚 《网络对抗技术》实验八 Web基础

    20155313 杨瀚 <网络对抗技术>实验八 Web基础 一.实验目的 1.Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含 ...

  5. Spring @Value注入值失败,错误信息提示:Could not resolve placeholder

    问题根源: @Value("${wx.app.config.appid}") public Object appid; 异常信息: Caused by: java.lang.Ill ...

  6. [清华集训2015 Day2]矩阵变换-[稳定婚姻模型]

    Description 给出一个N行M列的矩阵,保证满足以下性质: M>N. 矩阵中每个数都是 [0,N]中的自然数. 每行中, [1,N]中每个自然数刚好出现一次,其余的都是0. 每列中,[1 ...

  7. 汇编 sub减法指令 比较指令CMP JZ条件跳转指令

    二.SUB指令 减法指令SUB (SUBtract) 格式: SUB A,B //A=A-B; 功能: 两个操作数的相减,即从A中减去B,其结果放在A中. 二.CMP 和JZ 指令 比较指令CMP 格 ...

  8. flaskr 报错及其修改

    作者:hhh5460 官网有一个flaskr的例子,按照其8个步骤(包括测试),一步一步照着做,有3个地方报错. 究其原因,可能是flaskr这个例子年代比较久远,而现在python以及flask都有 ...

  9. Elasticsearch Query DSL 整理总结(一)—— Query DSL 概要,MatchAllQuery,全文查询简述

    目录 引言 概要 Query and filter context Match All Query 全文查询 Full text queries 小结 参考文档 引言 虽然之前做过 elasticse ...

  10. chrome浏览器插件 Octotree 让你浏览GitHub的时候像IDE 一样提供项目目录

    GitHub 作为代码托管平台,竟然没有提供项目目录,方便用户在线快速浏览项目结构.所以,在线分析项目源码就会变得很繁琐,必须一层一层点击,然后再一次一次地向上返回.要知道,本来 GitHub 网站在 ...