TOJ1698/POJ3264Balanced Lineup (线段树 or RMQ-ST)
传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1698
时间限制(普通/Java):5000MS/50000MS 内存限制:65536KByte
描述
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
输入
Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
输出
Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
样例输入
6 3
1
7
3
4
2
5
1 5
4 6
2 2
样例输出
6
3
0
思路:题目大意就是,给n个数m个查询,下面行输入n个数。m行输入m个查询,查询最大值和最小值的差。
rmq-st模板题。拿来练手的。作为丢人的初学线段树选手,也附上手打的线段树代码。
RMQ-ST代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cmath>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<vector>
#define LL long long
#include<assert.h>
using namespace std;
int a[],dm[][],dx[][];
void rmq(int num){
for(int i = ; i < num ; i++){
dm[i][] = dx[i][] = a[i];
}
for(int j = ; (<<j) <= num ; j++){
for(int i = ;i+(<<j)- < num ;i ++){
dx[i][j] = max(dx[i][j-],dx[i+(<<(j-))][j-]);
dm[i][j] = min(dm[i][j-],dm[i+(<<(j-))][j-]);
}
}
}
int qmax(int st,int ed){
int k = ;
while((<<(k+))<= ed - st + )k++;
return max(dx[st][k],dx[ed - (<<k) + ][k]);
}
int qmin(int st,int ed){
int k = ;
while((<<(k+))<= ed - st + )k++;
return min(dm[st][k],dm[ed - (<<k) + ][k]);
}
int main(){
int n,k;
while(~scanf("%d %d",&n,&k)){
memset(dx,,sizeof(dx));
memset(dm,,sizeof(dm));
for(int i = ; i < n ; i++)scanf("%d",&a[i]);
rmq(n);
while(k--){
int x,y;
scanf("%d %d",&x,&y);
printf("%d\n",qmax(x-,y-)-qmin(x-,y-));
}
}
}
线段树代码:
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn = ;
struct note{
int l,r;
int nMin,nMax;
}segTree[maxn<<];
int Max,Min;
int a[maxn];
void build(int i,int l,int r){
segTree[i].l = l;
segTree[i].r = r;
if(l==r){
segTree[i].nMin = segTree[i].nMax = a[l];
return;
}
int mid = (l+r)>>;
build(i<<,l,mid);
build(i<<|,mid+,r);
segTree[i].nMax = max(segTree[i<<].nMax,segTree[i<<|].nMax);
segTree[i].nMin = min(segTree[i<<].nMin,segTree[i<<|].nMin);
}
void query(int i,int l,int r){
if(segTree[i].nMax <= Max && segTree[i].nMin >= Min){
return;
}
if(segTree[i].l == l && segTree[i].r == r){
Max = max(segTree[i].nMax,Max);
Min = min(segTree[i].nMin,Min);
return;
}
int mid = (segTree[i].l + segTree[i].r) >> ;
if(r <= mid)
query(i<<,l,r);
else if(l > mid)
query(i<<|,l,r);
else{
query(i<<,l,mid);
query(i<<|,mid+,r);
}
}
int main(){
int n,m;
while(~scanf("%d %d",&n,&m)){
for(int i = ; i <= n ;i++)scanf("%d",&a[i]);
build(,,n);
while(m--){
int x,y;
Max = -;Min = ;
scanf("%d %d",&x,&y);
query(,x,y);
printf("%d\n",Max-Min);
}
}
}
TOJ1698/POJ3264Balanced Lineup (线段树 or RMQ-ST)的更多相关文章
- poj 3264 Balanced Lineup(线段树、RMQ)
题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...
- POJ - 3264 Balanced Lineup 线段树解RMQ
这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...
- POJ3264Balanced Lineup 线段树练手
题目意思:给定Q(1<=Q<=200000)个数A1,A2,```,AQ,多次求任一区间Ai-Aj中最大数和最小数的差 #include <iostream> #include ...
- POJ-3264 Balanced Lineup(区间最值,线段树,RMQ)
http://poj.org/problem?id=3264 Time Limit: 5000MS Memory Limit: 65536K Description For the daily ...
- POJ 3368 Frequent values 线段树与RMQ解法
题意:给出n个数的非递减序列,进行q次查询.每次查询给出两个数a,b,求出第a个数到第b个数之间数字的最大频数. 如序列:-1 -1 1 1 1 1 2 2 3 第2个数到第5个数之间出现次数最多的是 ...
- 线段树+RMQ问题第二弹
线段树+RMQ问题第二弹 上篇文章讲到了基于Sparse Table 解决 RMQ 问题,不知道大家还有没有印象,今天我们会从线段树的方法对 RMQ 问题再一次讨论. 正式介绍今天解决 RMQ 问题的 ...
- POJ - 3264 Balanced Lineup(线段树或RMQ)
题意:求区间最大值-最小值. 分析: 1.线段树 #include<cstdio> #include<cstring> #include<cstdlib> #inc ...
- POJ 3264 Balanced Lineup 线段树RMQ
http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...
- [POJ] 3264 Balanced Lineup [线段树]
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34306 Accepted: 16137 ...
随机推荐
- node 支持es6
安装 babel-cli, 全局安装 npm install babel-cli -g 然后 在工程目录下 安装 npm install babel-cli --save npm install b ...
- Firefox What's New 太难找了
Firefox每次更新版本,不知道更新了什么,找不到Waht‘s New,做个记录! 1.点击mozilla下拉 2.最左侧 MOZILLA>SUPPORT>Firefox 3.https ...
- Python_02 基本数据类型、while循环
1.基本数据类型 1.字符串(引号内): name=“我是Manuel” name='我是Manuel' name="""Manuel""" ...
- 如何玩转小程序+公众号?手把手教你JeeWx小程序CMS与公众号关联
随着微信小程序新功能.新入口的不断更新,小程序的商业价值逐步增强,特别是小程序与公众号的深度融合,已经让小程序成为各行业新的营销渠道.Jeewx平台专注小程序的开发,逐步完善小程序生态圈,通过简单操作 ...
- 跟我一起学Python-day1(条件语句以及初识变量)
通过练习题来学习条件语句 1,使用while循环输出1 2 3 4 5 6 8 9 10 n=1 while n<11: if n=7: pass else: print(n) n=n ...
- JAVA8-待续
1. 函数式编程,因为在并发和时间驱动编程中的优势,函数式编程又逐渐流行起来 以前是实现一个比较器需要实现Comparator接口,并重写compare方法,以下为两种实现方法(类似还有线程,事件等) ...
- vue.js 组件引用之初级 之二
1. template 标签也可以实现替换,这样可以省去script标签了 <!DOCTYPE html> <html lang="en"> <hea ...
- 使用Docker容器的十大误区
转自:http://www.dockone.io/article/1264 对于用户来说,可能一开始在不了解的情况下会对容器报以拒绝的态度,但是在尝到容器的甜头.体验到它的强大性能之后,相信大家最终是 ...
- 2:if 语句
if 语句 语法形式: 第一种,只有两个分支: if 表达式: something else: something 第二种,有多个分支: if 表达式1: do something 1 elif 表达 ...
- split()方法解析
split()方法用于将字符串分割为字符串数组. 废话不多说,直接贴代码: var str="How are you doing today?" console.log(str.s ...