TOJ1698/POJ3264Balanced Lineup (线段树 or RMQ-ST)
传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1698
时间限制(普通/Java):5000MS/50000MS 内存限制:65536KByte
描述
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
输入
Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
输出
Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
样例输入
6 3
1
7
3
4
2
5
1 5
4 6
2 2
样例输出
6
3
0
思路:题目大意就是,给n个数m个查询,下面行输入n个数。m行输入m个查询,查询最大值和最小值的差。
rmq-st模板题。拿来练手的。作为丢人的初学线段树选手,也附上手打的线段树代码。
RMQ-ST代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cmath>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<vector>
#define LL long long
#include<assert.h>
using namespace std;
int a[],dm[][],dx[][];
void rmq(int num){
for(int i = ; i < num ; i++){
dm[i][] = dx[i][] = a[i];
}
for(int j = ; (<<j) <= num ; j++){
for(int i = ;i+(<<j)- < num ;i ++){
dx[i][j] = max(dx[i][j-],dx[i+(<<(j-))][j-]);
dm[i][j] = min(dm[i][j-],dm[i+(<<(j-))][j-]);
}
}
}
int qmax(int st,int ed){
int k = ;
while((<<(k+))<= ed - st + )k++;
return max(dx[st][k],dx[ed - (<<k) + ][k]);
}
int qmin(int st,int ed){
int k = ;
while((<<(k+))<= ed - st + )k++;
return min(dm[st][k],dm[ed - (<<k) + ][k]);
}
int main(){
int n,k;
while(~scanf("%d %d",&n,&k)){
memset(dx,,sizeof(dx));
memset(dm,,sizeof(dm));
for(int i = ; i < n ; i++)scanf("%d",&a[i]);
rmq(n);
while(k--){
int x,y;
scanf("%d %d",&x,&y);
printf("%d\n",qmax(x-,y-)-qmin(x-,y-));
}
}
}
线段树代码:
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn = ;
struct note{
int l,r;
int nMin,nMax;
}segTree[maxn<<];
int Max,Min;
int a[maxn];
void build(int i,int l,int r){
segTree[i].l = l;
segTree[i].r = r;
if(l==r){
segTree[i].nMin = segTree[i].nMax = a[l];
return;
}
int mid = (l+r)>>;
build(i<<,l,mid);
build(i<<|,mid+,r);
segTree[i].nMax = max(segTree[i<<].nMax,segTree[i<<|].nMax);
segTree[i].nMin = min(segTree[i<<].nMin,segTree[i<<|].nMin);
}
void query(int i,int l,int r){
if(segTree[i].nMax <= Max && segTree[i].nMin >= Min){
return;
}
if(segTree[i].l == l && segTree[i].r == r){
Max = max(segTree[i].nMax,Max);
Min = min(segTree[i].nMin,Min);
return;
}
int mid = (segTree[i].l + segTree[i].r) >> ;
if(r <= mid)
query(i<<,l,r);
else if(l > mid)
query(i<<|,l,r);
else{
query(i<<,l,mid);
query(i<<|,mid+,r);
}
}
int main(){
int n,m;
while(~scanf("%d %d",&n,&m)){
for(int i = ; i <= n ;i++)scanf("%d",&a[i]);
build(,,n);
while(m--){
int x,y;
Max = -;Min = ;
scanf("%d %d",&x,&y);
query(,x,y);
printf("%d\n",Max-Min);
}
}
}
TOJ1698/POJ3264Balanced Lineup (线段树 or RMQ-ST)的更多相关文章
- poj 3264 Balanced Lineup(线段树、RMQ)
题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...
- POJ - 3264 Balanced Lineup 线段树解RMQ
这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...
- POJ3264Balanced Lineup 线段树练手
题目意思:给定Q(1<=Q<=200000)个数A1,A2,```,AQ,多次求任一区间Ai-Aj中最大数和最小数的差 #include <iostream> #include ...
- POJ-3264 Balanced Lineup(区间最值,线段树,RMQ)
http://poj.org/problem?id=3264 Time Limit: 5000MS Memory Limit: 65536K Description For the daily ...
- POJ 3368 Frequent values 线段树与RMQ解法
题意:给出n个数的非递减序列,进行q次查询.每次查询给出两个数a,b,求出第a个数到第b个数之间数字的最大频数. 如序列:-1 -1 1 1 1 1 2 2 3 第2个数到第5个数之间出现次数最多的是 ...
- 线段树+RMQ问题第二弹
线段树+RMQ问题第二弹 上篇文章讲到了基于Sparse Table 解决 RMQ 问题,不知道大家还有没有印象,今天我们会从线段树的方法对 RMQ 问题再一次讨论. 正式介绍今天解决 RMQ 问题的 ...
- POJ - 3264 Balanced Lineup(线段树或RMQ)
题意:求区间最大值-最小值. 分析: 1.线段树 #include<cstdio> #include<cstring> #include<cstdlib> #inc ...
- POJ 3264 Balanced Lineup 线段树RMQ
http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...
- [POJ] 3264 Balanced Lineup [线段树]
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34306 Accepted: 16137 ...
随机推荐
- elcipse 安装lombok插件解决 @Slf4j 等找不到log变量问题
参考:http://blog.51cto.com/4925054/2127840 <dependency> <groupId>org.projectlombok</gro ...
- leetcode218
from heapq import * class Solution: def getSkyline(self, LRH): skyline = [] i, n = 0, len(LRH) liveH ...
- <基础> PHP 进阶之 函数(Function)
引用参数 $name = "eko"; function chang_name(&$name){ $name .= '_after_change'; } chang_nam ...
- linux驱动开发第一步hello
先查看Ubuntu的版本 cat /etc/issue lin@lin-virtual-machine:~$ cat /etc/issue Ubuntu 12.04 LTS \n \l 或者使用 li ...
- 开源小程序CMS网站, JeeWx-App-CMS 1.0 首版本发布
JeeWx-App-CMS 是jeewx开发的小程序网站开源项目,基于小程序wepy语言,具备cms网站的基本功能,能够打造简单易用的小程序公司官网.项目结构简单,逻辑清晰,代码规范,非常适合作为小程 ...
- spring异常
1.The type org.springframework.core.NestedRuntimeException cannot be resolved. It is indirectly refe ...
- vue ...mapMutations 的第一个参数默认为 数据对象state
1.实现回调后 路由的跳转 mutationsLoginHeaderBackFun(state,$router) { console.log(state); console.log($router); ...
- Go的50度灰:Golang新开发者要注意的陷阱和常见错误(转)
目录 [−] 初级 开大括号不能放在单独的一行 未使用的变量 未使用的Imports 简式的变量声明仅可以在函数内部使用 使用简式声明重复声明变量 偶然的变量隐藏Accidental Variable ...
- Java重写equals方法(重点讲解)
为什么equals()方法要重写? 判断两个对象在逻辑上是否相等,如根据类的成员变量来判断两个类的实例是否相等,而继承Object中的equals方法只能判断两个引用变量是否是同一个对象.这样我们往往 ...
- How to Pronounce the Word OR
How to Pronounce the Word OR Share Tweet Share Tagged With: OR Reduction Study the OR reduction. Th ...