Power Strings

Time Limit: 3000 MS Memory Limit: 65536 KB

64-bit integer IO format: %I64d , %I64u Java class name: Main

[Submit] [Status] [Discuss]

Description

Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).

Input

Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.

Output

For each s you should print the largest n such that s = a^n for some string a.

Sample Input

abcd
aaaa
ababab
.

Sample Output

1
4
3

题意:求解最多重复子串
利用KMP的前缀数组 以p为模式串 next【i】的意思 为前个字符组成的子串为s 则s的前next【i】个字符与后next【i】个字符相等
注意 : len(p)-next【len(p))】==循环节的长度
#include <iostream>
#include <stdio.h>
#include <string.h> using namespace std;
int next[];
char p[]; void find(char p[])
{
int m=strlen(p+);
next[]=;
for(int k=,q=; q<=m; q++)
{
while(k>&&p[k+]!=p[q])
k=next[k];
if(p[k+]==p[q])
k++;
next[q]=k;
}
} int main()
{ while(~scanf("%s",p+))
{
if(!strcmp(".",p+))
break;
find(p);
int len=strlen(p+);
int len1=len-next[len];
printf("%d\n",len%len1?:len/len1);
} }

Period

Time Limit: 3000 MS Memory Limit: 30000 KB

64-bit integer IO format: %I64d , %I64u Java class name: Main

[Submit] [Status] [Discuss]

Description

For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 <= i <= N) we want to know the largest K > 1 (if there is one) such that the prefix of S with length i can be written as AK ,that is A concatenated K times, for some string A. Of course, we also want to know the period K.

Input

The input consists of several test cases. Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) – the size of the string S.The second line contains the string S. The input file ends with a line, having the
number zero on it.

Output

For each test case, output "Test case #" and the
consecutive test case number on a single line; then, for each prefix
with length i that has a period K > 1, output the prefix size i and
the period K separated by a single space; the prefix sizes must be in
increasing order. Print a blank line after each test case.

Sample Input

3
aaa
12
aabaabaabaab
0

Sample Output

Test case #1
2 2
3 3 Test case #2
2 2
6 2
9 3
12 4 题意: 定义字符串A,若A最多由n个相同字串s连接而成,则A=s^n,如"aaa" = "a"^3,"abab" = "ab"^2 "ababa" = "ababa"^1 给出一个字符串A,求该字符串的所有前缀中有多少个前缀SA= s^n(n>1) 输出符合条件的前缀长度及其对应的n
如aaa 前缀aa的长度为2,由2个'a'组成 前缀aaa的长度为3,由3个"a"组成
分析:KMP
若某一长度L的前缀符合上诉条件,则
1.next[L]!=0(next[L]=0时字串为原串,不符合条件)
2.L%(L-next[L])==0(此时字串的长度为L/next[L]) 对于2:有str[0]....str[next[L]-1]=str[L-next[L]-1]...str[L-1]
=》str[L-next[L]-1] = str[L-next[L]-1+L-next[L]-1] = str[2*(L-next[L]-1)];
假设S = L-next[L]-1;则有str[0]=str[s]=str[2*s]=str[3*s]...str[k*s],对于所有i%s==0,均有s[i]=s[0]
同理,str[1]=str[s+1]=str[2*s+1]....
str[j]=str[s+j]=str[2*s+j]....
综上,若L%S==0,则可得L为str[0]...str[s-1]的相同字串组成,
总长度为L,其中字串长度SL = s-0+1=L-next[L],循环次数为L/SL
故对于所有大于1的前缀,只要其符合上述条件,即为答案之一
#include "stdio.h"
int p[],N;
char str[]; void get_p(int n)
{
int i,j=-;
p[]=-;
for(i=;i<n;i++)
{
while(j>- && str[i]!=str[j+]) j=p[j];
if(str[i] == str[j+]) j++;
p[i]=j;
}
} int main()
{
int i,j,cas=;
while(scanf("%d",&N),N)
{
scanf("%s",str);
get_p(N);
printf("Test case #%d\n",cas++);
for(i=;i<N;i++)
{
if(p[i]!=- && (i+)%(i-p[i])==)
printf("%d %d\n",i+,(i+)/(i-p[i]));
}
printf("\n");
}
}

http://www.cnblogs.com/dolphin0520/archive/2011/08/24/2151846.html  看一看


poj 2046&&poj1961KMP 前缀数组的更多相关文章

  1. poj 2566Bound Found(前缀和,尺取法)

    http://poj.org/problem?id=2566: Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissi ...

  2. codeforces 381 D Alyona and a tree(倍增)(前缀数组)

    Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. 转载-KMP算法前缀数组优雅实现

    转自:http://www.cnblogs.com/10jschen/archive/2012/08/21/2648451.html 我们在一个母字符串中查找一个子字符串有很多方法.KMP是一种最常见 ...

  4. 子串查询(二维前缀数组) 2018"百度之星"程序设计大赛 - 资格赛

    子串查询 Time Limit: 3500/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  5. 线段树、前缀数组:HDU1591-Color the ball(区间更新、简单题)

    Color the ball Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  6. 前缀数组O(n^3)做法

    前缀数组O(n^3)做法 s.substr()的应用非常方便 令string s = "; ); //只有一个数字5表示从下标为5开始一直到结尾:sub1 = "56789&quo ...

  7. POJ-2752(KMP算法+前缀数组的应用)

    Seek the Name, Seek the Fame POJ-2752 本题使用的算法还是KMP 最主要的片段就是前缀数组pi的理解,这里要求解的纸盒pi[n-1]有关,但是还是需要使用一个循环来 ...

  8. poj 1961 Period 【KMP-next前缀数组的应用】

    题目地址:http://poj.org/problem?id=1961 Sample Input 3 aaa 12 aabaabaabaab 0 Sample Output Test case #1 ...

  9. POJ 2406 KMP/后缀数组

    题目链接:http://poj.org/problem?id=2406 题意:给定一个字符串,求由一个子串循环n次后可得到原串,输出n[即输出字符串的最大循环次数] 思路一:KMP求最小循环机,然后就 ...

随机推荐

  1. Codeforces 757C. Felicity is Coming!

    C. Felicity is Coming! time limit per test:2 seconds memory limit per test:256 megabytes input:stand ...

  2. [FreeMind] 绘制思维时遇到的常见问题解决办法

    如何改变节点的摆放方向? 如果是新建节点,选择要放置节点的那一侧,按enter键,或者鼠标右键,插入平行节点即可. 如果是已经建好的节点,可以用ctrl+x, ctrl+v粘贴到另一边,或者选中子节点 ...

  3. Python学习1 基础数据类型

    一.字符串                         1.去除首尾字符 str_test = 'Hello World!' str_test.split()#将字符串分割为列表str_test. ...

  4. 如何烧写BIOS到SD卡里面

    针对TINY6410 ADK型号 1.SD卡格式化为FAT32或者FAT格式 2.将SD卡插入USB接口的读卡器,并插在PC的USB口 3.“以管理员身份运行”SD-Flasher.exe(在tiny ...

  5. nginx xxx.conf

    server { listen 80 ; server_name xxx.test.cn localhost 127.0.0.1 115.29.96.222; access_log /var/log/ ...

  6. CSS实现背景透明而背景上的文字不透明

    在我们设计制作一些网页的时候可能会用到半透明的效果,首先我们可能会想到用PNG图片处理,当然这是一个不错的办法,唯一的兼容性问题就是ie6 下的BUG,但这也不困难,加上一段js处理就行了.但假如我们 ...

  7. jQuery 2

    <head > <style type="text/css">        /*table中偶数行*/ .tabEven {            bac ...

  8. 初识jvm堆,栈参数

    堆的分配参数: -Xmx //设立最大堆 -Xms //最小堆,初始化堆大小 -Xmn  //设置新生代(eden+2*surviivor+old)大小   官方推荐:3/8Xmx------> ...

  9. 【Apache】Apache服务的安装(一)

    Apache简介 Apache HTTP Server(简称Apache)是Apache软件基金会的一个开放源码的网页服务器,可以在大多数计算机操作系统中运行,由于其多平台和安全性被广泛使用,是最流行 ...

  10. 2018.10.31 NOIP模拟 几串字符(数位dp+组合数学)

    传送门 如果观察到性质其实也不是很难想. 然而考试的时候慌得一批只有心思写暴力233. 下面是几个很有用的性质: c0,1+1≥c1,0≥c0,1c_{0,1 }+1 ≥ c_{1,0} ≥ c_{0 ...