Power Strings

Time Limit: 3000 MS Memory Limit: 65536 KB

64-bit integer IO format: %I64d , %I64u Java class name: Main

[Submit] [Status] [Discuss]

Description

Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).

Input

Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.

Output

For each s you should print the largest n such that s = a^n for some string a.

Sample Input

abcd
aaaa
ababab
.

Sample Output

1
4
3

题意:求解最多重复子串
利用KMP的前缀数组 以p为模式串 next【i】的意思 为前个字符组成的子串为s 则s的前next【i】个字符与后next【i】个字符相等
注意 : len(p)-next【len(p))】==循环节的长度
#include <iostream>
#include <stdio.h>
#include <string.h> using namespace std;
int next[];
char p[]; void find(char p[])
{
int m=strlen(p+);
next[]=;
for(int k=,q=; q<=m; q++)
{
while(k>&&p[k+]!=p[q])
k=next[k];
if(p[k+]==p[q])
k++;
next[q]=k;
}
} int main()
{ while(~scanf("%s",p+))
{
if(!strcmp(".",p+))
break;
find(p);
int len=strlen(p+);
int len1=len-next[len];
printf("%d\n",len%len1?:len/len1);
} }

Period

Time Limit: 3000 MS Memory Limit: 30000 KB

64-bit integer IO format: %I64d , %I64u Java class name: Main

[Submit] [Status] [Discuss]

Description

For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 <= i <= N) we want to know the largest K > 1 (if there is one) such that the prefix of S with length i can be written as AK ,that is A concatenated K times, for some string A. Of course, we also want to know the period K.

Input

The input consists of several test cases. Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) – the size of the string S.The second line contains the string S. The input file ends with a line, having the
number zero on it.

Output

For each test case, output "Test case #" and the
consecutive test case number on a single line; then, for each prefix
with length i that has a period K > 1, output the prefix size i and
the period K separated by a single space; the prefix sizes must be in
increasing order. Print a blank line after each test case.

Sample Input

3
aaa
12
aabaabaabaab
0

Sample Output

Test case #1
2 2
3 3 Test case #2
2 2
6 2
9 3
12 4 题意: 定义字符串A,若A最多由n个相同字串s连接而成,则A=s^n,如"aaa" = "a"^3,"abab" = "ab"^2 "ababa" = "ababa"^1 给出一个字符串A,求该字符串的所有前缀中有多少个前缀SA= s^n(n>1) 输出符合条件的前缀长度及其对应的n
如aaa 前缀aa的长度为2,由2个'a'组成 前缀aaa的长度为3,由3个"a"组成
分析:KMP
若某一长度L的前缀符合上诉条件,则
1.next[L]!=0(next[L]=0时字串为原串,不符合条件)
2.L%(L-next[L])==0(此时字串的长度为L/next[L]) 对于2:有str[0]....str[next[L]-1]=str[L-next[L]-1]...str[L-1]
=》str[L-next[L]-1] = str[L-next[L]-1+L-next[L]-1] = str[2*(L-next[L]-1)];
假设S = L-next[L]-1;则有str[0]=str[s]=str[2*s]=str[3*s]...str[k*s],对于所有i%s==0,均有s[i]=s[0]
同理,str[1]=str[s+1]=str[2*s+1]....
str[j]=str[s+j]=str[2*s+j]....
综上,若L%S==0,则可得L为str[0]...str[s-1]的相同字串组成,
总长度为L,其中字串长度SL = s-0+1=L-next[L],循环次数为L/SL
故对于所有大于1的前缀,只要其符合上述条件,即为答案之一
#include "stdio.h"
int p[],N;
char str[]; void get_p(int n)
{
int i,j=-;
p[]=-;
for(i=;i<n;i++)
{
while(j>- && str[i]!=str[j+]) j=p[j];
if(str[i] == str[j+]) j++;
p[i]=j;
}
} int main()
{
int i,j,cas=;
while(scanf("%d",&N),N)
{
scanf("%s",str);
get_p(N);
printf("Test case #%d\n",cas++);
for(i=;i<N;i++)
{
if(p[i]!=- && (i+)%(i-p[i])==)
printf("%d %d\n",i+,(i+)/(i-p[i]));
}
printf("\n");
}
}

http://www.cnblogs.com/dolphin0520/archive/2011/08/24/2151846.html  看一看


poj 2046&&poj1961KMP 前缀数组的更多相关文章

  1. poj 2566Bound Found(前缀和,尺取法)

    http://poj.org/problem?id=2566: Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissi ...

  2. codeforces 381 D Alyona and a tree(倍增)(前缀数组)

    Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. 转载-KMP算法前缀数组优雅实现

    转自:http://www.cnblogs.com/10jschen/archive/2012/08/21/2648451.html 我们在一个母字符串中查找一个子字符串有很多方法.KMP是一种最常见 ...

  4. 子串查询(二维前缀数组) 2018"百度之星"程序设计大赛 - 资格赛

    子串查询 Time Limit: 3500/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  5. 线段树、前缀数组:HDU1591-Color the ball(区间更新、简单题)

    Color the ball Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  6. 前缀数组O(n^3)做法

    前缀数组O(n^3)做法 s.substr()的应用非常方便 令string s = "; ); //只有一个数字5表示从下标为5开始一直到结尾:sub1 = "56789&quo ...

  7. POJ-2752(KMP算法+前缀数组的应用)

    Seek the Name, Seek the Fame POJ-2752 本题使用的算法还是KMP 最主要的片段就是前缀数组pi的理解,这里要求解的纸盒pi[n-1]有关,但是还是需要使用一个循环来 ...

  8. poj 1961 Period 【KMP-next前缀数组的应用】

    题目地址:http://poj.org/problem?id=1961 Sample Input 3 aaa 12 aabaabaabaab 0 Sample Output Test case #1 ...

  9. POJ 2406 KMP/后缀数组

    题目链接:http://poj.org/problem?id=2406 题意:给定一个字符串,求由一个子串循环n次后可得到原串,输出n[即输出字符串的最大循环次数] 思路一:KMP求最小循环机,然后就 ...

随机推荐

  1. tomcat加载web项目报错:bad major version at offset=6

    分析原因是开发的web项目的java版本高于tomcat使用的java版本,比如我是在java1.6上开发的,但是tomcat使用的java运行环境是1.5,所以会报改错误. 转载博客如下:http: ...

  2. iOS最全的常用正则表达式大全

    很多不太懂正则的朋友,在遇到需要用正则校验数据时,往往是在网上去找很久,结果找来的还是不很符合要求.所以我最近把开发中常用的一些正则表达式整理了一下,包括校验数字.字符.一些特殊的需求等等.给自己留个 ...

  3. sqli-labs:17,增删改

    增 insert into users values(','lcamry','lcamry'); 删 delete from users where id=16 删数据库:drop database ...

  4. wepy - 小程序开发框架

    2017-09-23 运行命令. wepy build --watch 2017-11-06 wepy一直用的1.5.8,同事有一次安装了最新的1.6.0就报错了... unexpected char ...

  5. Spark的Rpct模块的学习

    Spark的Rpct模块的学习 Spark的Rpc模块是1.x重构出来可,以前的代码中大量使用了akka的类,为了把akka从项目的依赖中移除,所有添加了该模块.先看下该模块的几个主要的类   使用E ...

  6. spring学习 十 schema-based 前置后后置通知

    spring 提供了 2 种 AOP 实现方式:(1)Schema-based ,(2)AspectJ Schema-based:每个通知都需要实现接口或类,配置 spring 配置文件时在<a ...

  7. 各种 on事件触发js代码

    [转]各种 on事件触发js代码 1.onmouseenter:当鼠标进入选区执行代码 <div style="background-color:red" onmouseen ...

  8. 回文日期(NOIP2016)

    题目:回文日期 这题虽然说不难,但是也不能算水了. 我先讲讲思路.60分的算法很好写,就是判断一下是不是回文串,分离每个数位,判断即可. 但我们的目标是满分,所以我来讲讲满分算法. 首先,给的是区间, ...

  9. linux_配置三台虚拟机免密登录

    在node01上面直接生成公钥和私钥 ssh-keygen --> 四下回车 ll -a 进行查看,发现出现.ssh文件即已经生成 将此node01的公钥拷贝到第二台机器上 ssh-copy-i ...

  10. react属性绑定

    1.属性值绑定state里的数据,不用引号 class App extends Component { constructor(props){ super(props); this.state = { ...