2019.02.09 codeforces gym 100548F. Color(容斥原理)
传送门
题意简述:对n个排成一排的物品涂色,有m种颜色可选。
要求相邻的物品颜色不相同,且总共恰好有K种颜色,问所有可行的方案数。(n,m≤1e9,k≤1e6n,m\le1e9,k\le1e6n,m≤1e9,k≤1e6)
思路:
容斥原理套路:
先不考虑是否选全kkk种颜色,方案数为Cmk∗k∗(k−1)n−1C_m^k*k*(k-1)^{n-1}Cmk∗k∗(k−1)n−1。
然后枚举剩下的至少有几种颜色没选来容斥掉非法情况:
于是Ans=Cmk∑i=k1(−1)k−iCkii(i−1)n−1Ans=C_m^k\sum_{i=k}^1(-1)^{k-i}C_k^ii(i-1)^{n-1}Ans=Cmk∑i=k1(−1)k−iCkii(i−1)n−1
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int N=1e6+5,mod=1e9+7;
typedef long long ll;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(const int&a,const int&b){return a>=b?a-b:a-b+mod;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=mul(a,a))if(p&1)ret=mul(ret,a);return ret;}
int n,m,k,C[N],inv[N],mult;
inline void init(){
inv[1]=1;
for(ri i=2;i<=1000000;++i)inv[i]=mul(inv[mod-mod/i*i],mod-mod/i);
}
inline void Init(){
C[0]=1,mult=1;
for(ri i=1;i<=k;++i)C[i]=mul(mul(C[i-1],k-i+1),inv[i]);
for(ri i=1;i<=k;++i)mult=mul(mult,mul(m-i+1,inv[i]));
}
int main(){
init();
for(ri ans,tt=1,up=read();tt<=up;++tt){
n=read(),m=read(),k=read(),ans=0;
Init();
for(ri i=k,tmp;i;--i){
tmp=mul(C[i],mul(i,ksm(i-1,n-1)));
ans=(k-i)&1?dec(ans,tmp):add(ans,tmp);
}
cout<<"Case #"<<tt<<": "<<mul(mult,ans)<<'\n';
}
return 0;
}
2019.02.09 codeforces gym 100548F. Color(容斥原理)的更多相关文章
- 2019.02.09 bzoj2839: 集合计数(容斥原理)
传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk种方案 ...
- 2019.02.09 bzoj4455: [Zjoi2016]小星星(容斥原理+dp)
传送门 题意简述:给一张图和一棵树(点数都为n≤17n \le17n≤17),问有多少种给树的标号方法方法使得图中去掉多余的边之后和树一模一样. 思路: 容斥好题啊. 考虑fi,jf_{i,j}fi, ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- Gym 100548F Color 2014-2015 ACM-ICPC, Asia Xian Regional Contest (容斥原理+大数取模)
题意:有N朵花,在M种颜色中选择恰好k种不同的颜色,将这N朵花染色,要求相邻的两朵花颜色不相同. 分析:若限制改为选择不超过k种颜色将N朵花朵染色,则方案数\(f(N,k) = k*(k-1)^{N- ...
- Gym 100548F Color (数论容斥原理+组合数)
题意:给定 m 种颜色,把 n 盆花排成一直线的花涂色.要求相邻花的颜色不相同,且使用的颜色恰好是k种.问一共有几种涂色方法. 析:首先是先从 m 种颜色中选出 k 种颜色,然后下面用的容斥原理,当时 ...
- 2019.02.09 codeforces451 E. Devu and Flowers(容斥原理)
传送门 题意简述:给出n堆花,对于第j堆,有f[j]朵花,每堆花的颜色不同,现在要从中选出s朵,求方案数. 思路: 假设所有花没有上限直接插板法,现在有了上限我们用容斥扣掉多算的 状压一下再容斥:fi ...
- 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)
传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
- 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)
传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...
随机推荐
- Android 中Application向Activity 传递数值
比如极光注册时获取用户的唯一标示ID需要在登录时进行传递,实现消息的指定用户推送功能 public String id; public String getId() { return id; } pu ...
- TOJ4757: 12345(数学)
传送门 时间限制(普通/Java):1000MS/3000MS 内存限制:65536KByte 描述 为了说明水题也不是那么好AC的,FD出了一个由数字1~5组成的题目,题意如下: 给定一个正 ...
- Maximum GCD(fgets读入)
Maximum GCD https://vjudge.net/contest/288520#problem/V Given the N integers, you have to find the m ...
- 用java修改文件的编码
1.将本地的文件转换成另外一种编码输出,主要逻辑代码如下: /** * 将本地文件以哪种编码输出 * @param inputfile 输入文件的路径 * @param outfile 输出文件的路径 ...
- 国内淘宝镜像 cnpm转npm
npm install -g cnpm --registry=http://registry.npm.taobao.org
- 5J - 复习时间
为了能过个好年,xhd开始复习了,于是每天晚上背着书往教室跑.xhd复习有个习惯,在复习完一门课后,他总是挑一门更简单的课进行复习,而他复习这门课的效率为两门课的难度差的平方,而复习第一门课的效率为1 ...
- L1-027 出租(20)(STL-map代码)
L1-027 出租(20 分) 下面是新浪微博上曾经很火的一张图: 一时间网上一片求救声,急问这个怎么破.其实这段代码很简单,index数组就是arr数组的下标,index[0]=2 对应 arr[2 ...
- python多线程下载网页图片并保存至特定目录
#!python3 #multidownloadXkcd.py - Download XKCD comics using multiple threads. import requests impor ...
- Laravel 利用 observer 类基于状态属性,对进行删除和修改的控制
1 我们知道 Observer 类可以监听模型类的相关事件 1.1 creating, created, updating, updated, saving, saved, deleting, del ...
- Spring Boot REST(二)源码分析
Spring Boot REST(二)源码分析 Spring 系列目录(https://www.cnblogs.com/binarylei/p/10117436.html) SpringBoot RE ...