TOYS

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 16222   Accepted: 7779

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

 
对于每个玩具,二分找到其左边第一条直线,由此得到对应区域。
 //2017-08-30
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int N = ; struct Point{
int x, y;
Point(){}
Point(int _x, int _y):x(_x), y(_y){}
//a-b 表示向量 ba
Point operator- (const Point &b) const {
return Point(x-b.x, y-b.y);
}
//向量叉积
int operator* (const Point &b) const {
return x*b.y - y*b.x;
}
}A, B; int ans[N], U[N], L[N];
int n, m; bool check(int id, int x, int y){
Point a(L[id], B.y);
Point b(U[id], A.y);
Point c(x, y);
//令I = 向量ab 叉乘 向量 bc,若I为正,点c在向量ab的左侧(沿向量方向看);为负则在右侧
return ((c-a)*(b-a)) > ;
} int get_position(int x, int y){
int l = , r = n+, mid, ans;
while(l <= r){
mid = (l+r)>>;
if(check(mid, x, y)){
ans = mid;
l = mid+;
}else r = mid-;
}
return ans;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputA.txt", "r", stdin);
while(cin>>n && n){
cin>>m>>A.x>>A.y>>B.x>>B.y;
U[] = L[] = A.x;
U[n+] = L[n+] = B.x;
for(int i = ; i <= n; i++)
cin>>U[i]>>L[i];
memset(ans, , sizeof(ans));
int x, y;
for(int i = ; i < m; i++){
cin>>x>>y;
ans[get_position(x, y)]++;
}
for(int i = ; i <= n; i++)
cout<<i<<": "<<ans[i]<<endl;
cout<<endl;
} return ;
}

POJ2318(KB13-A 计算几何)的更多相关文章

  1. POJ-2318 TOYS 计算几何 判断点在线段的位置

    题目链接:https://cn.vjudge.net/problem/POJ-2318 题意 在一个矩形内,给出n-1条线段,把矩形分成n快四边形 问某些点在那个四边形内 思路 二分+判断点与位置关系 ...

  2. 计算几何——点线关系(叉积)poj2318

    #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #i ...

  3. ACM/ICPC 之 计算几何入门-叉积-to left test(POJ2318-POJ2398)

    POJ2318 本题需要运用to left test不断判断点处于哪个分区,并统计分区的点个数(保证点不在边界和界外),用来做叉积入门题很合适 //计算几何-叉积入门题 //Time:157Ms Me ...

  4. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

  5. POJ2318:TOYS(叉积判断点和线段的关系+二分)&&POJ2398Toy Storage

    题目:http://poj.org/problem?id=2318 题意: 给定一个如上的长方形箱子,中间有n条线段,将其分为n+1个区域,给定m个玩具的坐标,统计每个区域中的玩具个数.(其中这些线段 ...

  6. poj2318(叉积判断点在直线左右+二分)

    题目链接:https://vjudge.net/problem/POJ-2318 题意:有n条线将矩形分成n+1块,m个点落在矩形内,求每一块点的个数. 思路: 最近开始肝计算几何,之前的几何题基本处 ...

  7. HDU 2202 计算几何

    最大三角形 Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. ACM 计算几何中的精度问题(转)

    http://www.cnblogs.com/acsmile/archive/2011/05/09/2040918.html 计算几何头疼的地方一般在于代码量大和精度问题,代码量问题只要平时注意积累模 ...

  9. hdu 2393:Higher Math(计算几何,水题)

    Higher Math Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. SO_REUSEADDR SO_REUSEPORT

    http://stackoverflow.com/questions/14388706/socket-options-so-reuseaddr-and-so-reuseport-how-do-they ...

  2. graphite custom functions

    尊重作者的劳动,转载请注明作者及原文地址 http://www.cnblogs.com/txwsqk/p/6522854.html 参考 https://graphite.readthedocs.io ...

  3. Dubbo原理实现之使用Javassist字节码结束构建代理对象

    JavassistProxyFactory利用自己吗技术构建代理对象的实现如下: public <T> T getProxy(Invoker<T> invoker, Class ...

  4. Linux - 更改软件源

    镜像源 网易镜像源 在网易开源镜像页面,点击对应镜像名的使用帮助,可以查看到更新源的方法,按步骤操作即可. 阿里云镜像源 在阿里云开源镜像页面,点击对应Mirror分类的help标签,可以查看到更新源 ...

  5. PHP:使用Zend对源码加密、Zend Guard安装以及Zend Guard Run-time support missing的解决方法

    Zend Guard是目前市面上最成熟的PHP源码加密产品了.刚好需要对自己的产品进行加密,折腾了一晚上,终于搞定,将碰到的问题及解决方法记录下来,方便日后需要,也可以帮助其他人.我使用的是Wamps ...

  6. Webflux快速入门

    SpringWebflux是SpringFramework5.0添加的新功能,WebFlux本身追随当下最火的Reactive Programming而诞生的框架,那么本篇就来简述一下这个框架到底是做 ...

  7. C# 泛型类在使用中约束

    首先看一下泛型的基本语法 访问修饰符 返回类型 泛型方法名 <T>(T 参数)   1):无法在泛型方法内部给任何 T 类型创建实例的对象,因为在泛型方法内部不知道传进来的对象有哪些构造函 ...

  8. Explain 执行计划 和 SQL优化

    Explain 介绍 在分析查询性能时,考虑EXPLAIN关键字同样很管用.EXPLAIN关键字一般放在SELECT查询语句的前面,用于描述MySQL如何执行查询操作.以及MySQL成功返回结果集需要 ...

  9. spring与struts简单整合案例

    Spring,负责对象对象创建 Struts, 用Action处理请求 Spring与Struts框架整合, 关键点:让struts框架action对象的创建,交给spring完成! 步骤: 1)引入 ...

  10. dubbo + zookeeper 简介和部署

    Dubbo简介: Dubbo 是阿里巴巴公司开源(以前不开源)的一个高性能优秀的服务框架, 使得应用可通过高性能的 RPC 实现服务的输入和输出功能, 可以和spring框架无缝集成. 那么这里, 啥 ...