皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

  上图为 8 皇后问题的一种解法。

  给定一个整数 n,返回所有不同的 皇后问题的解决方案。

  每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

  示例:

输入: 4
输出: [
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."], ["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]   该题与LeetCode37题解数独类似:LeetCode-37.解数独
  注释见代码   
 import java.util.ArrayList;
class Solution {
private List<List<String>> result;
public List<List<String>> solveNQueens(int n) {
char [][]array=new char [n][n];
result=new ArrayList<>();
//初始化数组
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
array[i][j]='.';
//先横再竖,全部规则符合时,切换到下一行
solveNQueens(array,0);
return result;
}
//参数n为数组行
public void solveNQueens(char [][]array,int n) {
int num=array.length;
//当n==num时,即为所有行数都已填入,此时处理array
if(n==num){
Deal(array);
return ;
}
for(int i=0;i<num;i++){
//每一位插入Q
array[n][i]='Q';
//因为从第一行开始填入,所以只需要进行从第一行到n行的检查
//分别为竖列的检查和斜的检查
if(checkj(array,n,i)&&checkij(array,n,i)){
//如果都符合规则的话就进入下一行
solveNQueens(array,n+1);
}
//当递归完成后或者不符合规则的时候更改回'.'
array[n][i]='.';
}
}
//处理array
private void Deal(char[][] array){
int num=array.length;
List<String> list=new ArrayList<>();
for(int i=0;i<num;i++){
String str="";
for(int j=0;j<num;j++){
str+=array[i][j];
}
list.add(str);
}
result.add(list);
}
//检查竖的
private boolean checkj(char [][]array,int i,int j){
for(int m=0;m<i;m++){
if(array[m][j]=='Q')
return false;
}
return true;
}
//检查斜的
private boolean checkij(char [][]array,int i,int j){
int num=array.length;
int tmpi=i,tmpj=j;
//从左上到该坐标
while(tmpi>0&&tmpj>0){
tmpi--;
tmpj--;
}
//寻找临界点
while(tmpi<i&&tmpj<j){
if(array[tmpi][tmpj]=='Q')
return false;
tmpi++;
tmpj++;
}
//从右上到该坐标
tmpi=i;
tmpj=j;
//寻找临界点
while(tmpi>0&&tmpj<num-1){
tmpi--;
tmpj++;
}
while(tmpi<i&&tmpj>j){
if(array[tmpi][tmpj]=='Q')
return false;
tmpi++;
tmpj--;
}
return true;
}
}
  

LeetCode-51.N皇后的更多相关文章

  1. Java实现 LeetCode 51 N皇后

    51. N皇后 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后问题的解决 ...

  2. leetcode 51. N皇后 及 52.N皇后 II

    51. N皇后 问题描述 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后 ...

  3. [leetcode]51. N-QueensN皇后

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  4. LeetCode 51. N-QueensN皇后 (C++)(八皇后问题)

    题目: The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two que ...

  5. leetcode 51 N皇后问题

    代码,由全排列转化而来,加上剪枝,整洁的代码: 共有4个变量,res(最终的结果),level,当前合理的解,n皇后的个数,visit,当前列是否放过皇后,由于本来就是在新的行方皇后,又通过visit ...

  6. Leetcode之回溯法专题-51. N皇后(N-Queens)

    Leetcode之回溯法专题-51. N皇后(N-Queens) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给 ...

  7. [LeetCode] 51. N-Queens N皇后问题

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  8. [LeetCode] N-Queens N皇后问题

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  9. LeetCode: 51. N-Queens(Medium)

    1. 原题链接 https://leetcode.com/problems/n-queens/description/ 2. 题目要求 游戏规则:当两个皇后位于同一条线上时(同一列.同一行.同一45度 ...

  10. Java实现 LeetCode 52 N皇后 II

    52. N皇后 II n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回 n 皇后不同的解决方案 ...

随机推荐

  1. ISO8583组包、解包

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace POS. ...

  2. Netty 聊天小程序

    这节讲解基于 Netty 快速实现一个聊天小程序. 一.服务端 1. SimpleChatServerHandler(处理器类) 该类主要实现了接收来自客户端的消息并转发给其他客户端. /** * 服 ...

  3. Netty入门(六)Decoder(解码器)

    Netty 提供了丰富的解码器抽象基类,主要分为两类: 解码字节到消息(ByteToMessageDecoder 和 ReplayingDecoder) 解码消息到消息(MessageToMessag ...

  4. BZOJ3173:[TJOI2013]最长上升子序列(Splay)

    Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input 第一行一 ...

  5. CHECKEDLISTBOX用法总结

    C# CHECKEDLISTBOX用法总结   一般认为:foreach (object obj in checkedListBox1.SelectedItems)即可遍历选中的值. 其实这里遍历的只 ...

  6. ORB SLAM2在Ubuntu 16.04上的运行配置

    http://www.mamicode.com/info-detail-1773781.html 安装依赖 安装OpenGL 1. 安装opengl Library$sudo apt-get inst ...

  7. windows下一根数据线玩转树莓派zero(w)

    买了个树莓派zero w,想着用一根普通micro数据线达成 供电+ssh+通过usb共享网络+远程桌面 的目标 通过用静态ip免去了用benjour的连接不稳定方法,下面开始细说 需要的硬件: 树莓 ...

  8. Android Environment 获取各种路径的方法

    <pre name="code" class="java">package com.deepoon.beyond.environment; impo ...

  9. Android 混淆打包

    有些时候我们希望我们自己的apk包不能被别人反编译而获取自己的源代码.这就需要我们通过Android提供的混淆打包技术来完成. 一.没有引用外部包的情况: 这种情况下代码混淆的方式相对简单: 1)只需 ...

  10. day78

    昨日回顾:  forms组件:   -校验数据(最重要)    -先定义一个类(继承Form)    -写一些要校验的字段(好多类型)    -字段(对象)有一些属性(最长多少,最短多少,是否必填,l ...