Blocks
Description

solution
这题和之前做过的一题的一个套路非常类似:把不是更优的决策给去掉,使得序列变得具有单调性,分析这题:
发现如果两个右端点 \(i\),\(j\) 满足 \(sum[j]<sum[i]\) 且 \(j<i\),那么 \(j\) 是不会进入最优决策的.
同理:如果两个左端点 \(i\),\(j\) 满足 \(sum[j]<sum[i]\) 且 \(i<j\) 那么 \(i\) 是不会进入最优决策的
所以我们分别维护一个左右端点的单调栈,然后两个单调指针扫一遍答案取Max即可
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=1000005;
inline int gi(){
RG int str=0;RG char ch=getchar();
while(ch>'9' || ch<'0')ch=getchar();
while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
return str;
}
int n,Q,a[N],st[N],q[N],tp=0;ll sum[N];
inline void solve(ll x){
int top=0,ans=0,tp=0;
q[++tp]=0;
for(int i=1;i<=n;i++){
sum[i]=sum[i-1]+a[i]-x;
if(sum[i]<sum[q[tp]])q[++tp]=i;
}
for(int i=n;i>=1;i--){
if(!top || sum[i]>sum[st[top]])st[++top]=i;
}
for(int i=1;i<=tp;i++){
while(top>1 && sum[q[i]]<=sum[st[top-1]])top--;
if(q[i]<st[top] && sum[st[top]]-sum[q[i]]>=0)
ans=Max(ans,st[top]-q[i]);
}
printf("%d ",ans);
}
void work()
{
scanf("%d%d",&n,&Q);
for(int i=1;i<=n;i++)a[i]=gi();
for(int i=1;i<=Q;i++)solve(gi());
}
int main()
{
work();
return 0;
}
Blocks的更多相关文章
- 从Script到Code Blocks、Code Behind到MVC、MVP、MVVM
刚过去的周五(3-14)例行地主持了技术会议,主题正好是<UI层的设计模式——从Script.Code Behind到MVC.MVP.MVVM>,是前一天晚上才定的,中午花了半小时准备了下 ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
- 开发该选择Blocks还是Delegates
前文:网络上找了很多关于delegation和block的使用场景,发现没有很满意的解释,后来无意中在stablekernel找到了这篇文章,文中作者不仅仅是给出了解决方案,更值得我们深思的是作者独特 ...
- poj 1390 Blocks
poj 1390 Blocks 题意 一排带有颜色的砖块,每一个可以消除相同颜色的砖块,,每一次可以到块数k的平方分数.问怎么消能使分数最大.. 题解 此题在徐源盛<对一类动态规划问题的研究&g ...
- Java 同步代码块 - Synchronized Blocks
java锁实现原理: http://blog.csdn.net/endlu/article/details/51249156 The synchronized keyword can be used ...
- 区块 Blocks
Structure / Blocks / Demonstrate block regions
- 使用Code::blocks在windows下写网络程序
使用Code::blocks在windows下写网络程序 作者 He YiJun – storysnail<at>gmail.com 团队 ls 版权 转载请保留本声明! 本文档包含的原创 ...
- Code::Blocks配置GTK+2和GTK+3
Code::Blocks配置GTK+2和GTK+3 作者 He YiJun – storysnail<at>gmail.com 团队 ls 版权 转载请保留本声明! 本文档包含的原创代码根 ...
- [翻译]理解Ruby中的blocks,Procs和lambda
原文出处:Understanding Ruby Blocks, Procs and Lambdas blocks,Procs和lambda(在编程领域被称为闭包)是Ruby中很强大的特性,也是最容易引 ...
- Java Synchronized Blocks
From http://tutorials.jenkov.com/java-concurrency/synchronized.html By Jakob Jenkov A Java synchro ...
随机推荐
- 201621123062《java程序设计》第14周作业总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 思维导图: 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的 ...
- day9
Alpha冲刺Day9 一:站立式会议 今日安排: 经过为期5天的冲刺,基本完成企业人员模块的开发.因第三方机构与企业存在委托的关系.第三方人员对于风险的自查.风险列表的展示以及自查风险的统计展示(包 ...
- 使用PostMan进行API自动化测试
最近在进行一个老项目的升级,第一步是先将node版本从4.x升级到8.x,担心升级会出现问题,所以需要将服务的接口进行验证:如果手动输入各种URL,人肉check,一个两个还行,整个服务..大几十个接 ...
- 从PRISM开始学WPF(四)Prism-Module?
从PRISM开始学WPF(一)WPF? 从PRISM开始学WPF(二)Prism? 从PRISM开始学WPF(三)Prism-Region? 从PRISM开始学WPF(四)Prism-Module? ...
- SpaceVim - 让你的vim变得更加高效和强大
SpaceVim 中文手册 项 目 主 页: https://spacevim.org Github 地址 : https://github.com/SpaceVim/SpaceVim SpaceVi ...
- Mego开发文档 - 基础查询
基础查询 Mego 使用语言集成查询(LINQ)从数据库查询数据.LINQ允许您使用C#(或其他.NET语言)根据派生的上下文和实体类编写强类型查询.将LINQ查询的表示传递给数据库提供者,翻译为数据 ...
- api-gateway实践(10)新服务网关 - OpenID Connect
网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...
- ELK学习总结(1-1)ELK是什么
1.elk 是什么 ? Elastic Stack(旧称ELK Stack),是一种能够从任意数据源抽取数据,并实时对数据进行搜索.分析和可视化展现的数据分析框架.(hadoop同一个开发人员) ja ...
- J2ee入门:servlet-mapping的映射配置
<servlet-mapping>元素在Servlet和URL样式之间定义一个映射.它包含了两个子元素<servlet- name>和<url-pattern> & ...
- 新概念英语(1-41)Penny's bag
新概念英语(1-41)Penny's bag Who is the tin of tobacco for? A:Is that bag heavy, Penny? B:Not very. A:Here ...