BZOJ3684 大朋友和多叉树(多项式相关计算)
设$f(x)$为树的生成函数,即$x^i$的系数为根节点权值为$i$的树的个数。
不难得出$f(x)=\sum_{k\in D}f(x)^k+x$
我们要求这个多项式的第$n$项,由拉格朗日反演可得
$[x^n]f(x)=\frac1n[x^{n-1}](\frac x{g(x)})^n$
其中$[x^n]f(x)$表示$f(x)$的$n$次项系数。
$f(x)$是$g(x)$的复合逆,即$g(f(x))=x$
在本题中,$g(x)=x-\sum_{k\in D}x^k$
我们需要多项式求逆和多项式快速幂。
多项式求逆就不介绍了,多项式快速幂一种朴素的做法是倍增+NTT,复杂度是$O(n\log n\log k)$
有没有更快的做法呢?
观察到$f(x)^n=e^{n\ln(f(x))}$,所以我们只需要快速算$\ln(f(x))$及$e^{f(x)}$即可。
注意$f(x)$的常数项要为1,还好出题人良心保证了这一点。
Part 1:如何算$\ln(f(x))$?
设$g(x)=\ln(f(x))$,那么$g'(x)=\frac{f'(x)}{f(x)}$,所以$g(x)=\int\frac{f'(x)}{f(x)}$,时间复杂度$O(n\log n)$
Part 2:如何算$e^{f(x)}$?
还是考虑倍增,假设我已经求出$g_0(x)=e^{f(x)}(mod\;x^n)$,要求$g(x)=e^{f(x)}(mod\;x^{2n})$
根据泰勒展开,有$$0=h(g(x))=\sum_{i=0}^{\infty}\frac{h^{(i)}(g_0(x))}{i!}(g(x)-g_0(x))^i$$当$i>1$时,上式$mod\;x^{2n}$为$0$
所以$0=h(g_0(x))+h'(g_0(x))(g(x)-g_0(x))\;(mod\;x^{2n})$
即$g(x)=g_0(x)-\frac{h(g_0(x))}{h'(g_0(x))}(mod\;x^{2n})$
其中$h(g(x))=\ln(g(x))-f(x)$
所以$g(x)=g_0(x)-\frac{\ln(g_0(x))-f(x)}{\frac 1{g_0(x)}}=g_0(x)(1-\ln(g_0(x))+f(x))\;(mod\;x^{2n})$
时间复杂度$O(n\log n)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define pre m=n<<1; for(int i=0;i<m;i++) r[i]=(r[i>>1]>>1)|((i&1)<<l) typedef long long ll;
const int p=,N=;
int n,m,l,x,nn,f[N],g[N],t1[N],t2[N],t3[N],r[N],ni[N];
ll pw(ll a,int b) {ll r=; for(;b;b>>=,a=a*a%p) if(b&) r=r*a%p; return r;} void ntt(int *a,int n,int f) {
for(int i=;i<n;i++) if(r[i]>i) std::swap(a[i],a[r[i]]);
for(int i=;i<n;i<<=)
for(int j=,wn=pw(,((p-)/(i*)*f+p-)%(p-));j<n;j+=i<<)
for(int k=,w=;k<i;k++,w=(ll)w*wn%p) {
int x=a[j+k],y=(ll)a[j+k+i]*w%p;
a[j+k]=(x+y)%p,a[j+k+i]=(x-y+p)%p;
}
if(!~f) for(int i=;i<n;i++) a[i]=(ll)a[i]*ni[n]%p;
}
void inv(int *f,int *g,int *t,int n,int l) {
if(n==) {g[]=pw(f[],p-); return;}
inv(f,g,t,n>>,l-),memcpy(t,f,sizeof(int)*n),memset(t+n,,sizeof(int)*n),pre;ntt(t,m,),ntt(g,m,);
for(int i=;i<m;i++) g[i]=(ll)g[i]*(-(ll)t[i]*g[i]%p+p)%p;
ntt(g,m,-),memset(g+n,,sizeof(int)*n);
}
void ln(int *f,int *g,int *t,int n,int l) {
memset(t,,sizeof(int)*n*),inv(f,t,t1,n,l);
for(int i=;i+<n;i++) g[i]=(ll)f[i+]*(i+)%p;
pre;ntt(g,m,),ntt(t,m,);
for(int i=;i<m;i++) g[i]=(ll)g[i]*t[i]%p;
ntt(g,m,-);
for(int i=m-;i;i--) g[i]=(ll)g[i-]*ni[i]%p;
g[]=,memset(g+n,,sizeof(int)*n);
}
void ex(int *f,int *g,int *t,int n,int l) {
if(n==) {g[]=; return;}
ex(f,g,t,n>>,l-),memset(t,,sizeof(int)*n*),ln(g,t,t2,n,l);
for(int i=;i<n;i++) t[i]=(f[i]-t[i]+p)%p;
t[]=(t[]+)%p,pre;ntt(t,m,),ntt(g,m,);
for(int i=;i<m;i++) g[i]=(ll)g[i]*t[i]%p;
ntt(g,m,-),memset(g+n,,sizeof(int)*n);
} int main() {
scanf("%d%d",&n,&m),f[]++,ni[]=,nn=n;
for(int i=;i<=m;i++) scanf("%d",&x),f[x-]=p-;
for(m=n,n=,l=;n<=m;n<<=) l++;
for(int i=;i<=n*;i++) ni[i]=(ll)(p-p/i)*ni[p%i]%p;
inv(f,g,t1,n,l),memset(f,,sizeof f),ln(g,f,t2,n,l);
for(int i=;i<n;i++) f[i]=(ll)f[i]*nn%p;
memset(g,,sizeof g),ex(f,g,t3,n,l),printf("%lld",(ll)g[nn-]*ni[nn]%p);
return ;
}
BZOJ3684 大朋友和多叉树(多项式相关计算)的更多相关文章
- bzoj3684: 大朋友和多叉树(拉格朗日反演+多项式全家桶)
题面 传送门 题解 首先你得知道什么是拉格朗日反演->这里 我们列出树的个数的生成函数 \[T(x)=x+\prod_{i\in D}T^i(x)\] \[T(x)-\prod_{i\in D} ...
- [BZOJ3684]大朋友和多叉树
设答案为$f_s$,它的生成函数为$\begin{align*}F(x)=\sum\limits_{i=0}^\infty f_ix^i\end{align*}$,则我们有$\begin{align* ...
- BZOJ 3684: 大朋友和多叉树 [拉格朗日反演 多项式k次幂 生成函数]
3684: 大朋友和多叉树 题意: 求有n个叶子结点,非叶节点的孩子数量\(\in S, a \notin S\)的有根树个数,无标号,孩子有序. 鏼鏼鏼! 树的OGF:\(T(x) = \sum_{ ...
- BZOJ 3684 大朋友和多叉树
BZOJ 3684 大朋友和多叉树 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的: ...
- [BZOJ3684][拉格朗日反演+多项式求幂]大朋友和多叉树
题面 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的:点权为\(1\)的结点是叶子结 ...
- 【bzoj3684】 大朋友和多叉树 生成函数+多项式快速幂+拉格朗日反演
这题一看就觉得是生成函数的题... 我们不妨去推下此题的生成函数,设生成函数为$F(x)$,则$[x^s]F(x)$即为答案. 根据题意,我们得到 $F(x)=x+\sum_{i∈D} F^i(x)$ ...
- 【BZOJ3684】大朋友和多叉树(拉格朗日反演)
题目链接 题意 求满足如下条件的多叉树个数: 1.每一个点的儿子个数在给定的集合 \(S\) 内 2.总的叶子节点树为 \(s\) 儿子之间有顺序关系,但节点是没有标号的. Sol 拉格朗日反演板子题 ...
- 【learning】多项式相关(求逆、开根、除法、取模)
(首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里 ...
- P2008 大朋友的数字
题目描述 有一批大朋友(年龄15岁以上),他们每人手上拿着一个数字,当然这个数字只有1位,也就是0到9之间.每个大朋友的分数为在他之前的最长不下降子序列中所有数之和.(这个序列必须以它作为结尾!)如有 ...
随机推荐
- Flask 学习 十一 关注者
数据库关系 1.1多对多关系 添加第三张表(关联表),多对多关系可以分解成原表和关联表之间的两个一对多的关系 多对多仍然使用db.relationship()方法定义,但是secondary参数必须设 ...
- jquery基本使用和实例
一.寻找元素 表单选择器 $(":input") //匹配所有 input, textarea, select 和 button 元素 $(":text") / ...
- DES MEI号码加密
对于加密来说,使用DES加密解密很好,但是为了使不同设备的密文不一样,可以使用 固定字符串 + 设备IMEI号码 加密的方式,这样可以分辨不同手机,限制手机的使用(若是注册,一个手机只有一个IMEI号 ...
- 201621123027 Week02-Java基本语法与类库
Week02-Java基本语法与类库 1.本周学习总结 关键词:基本语法,数据类型,包装类 本周讲了Java的基本数据类型和包装类: 数据类型主要分为八类(byte,short,int,long,do ...
- Python大婶博客汇总
Python大神金星 博客:http://www.cnblogs.com/jin-xin/articles/7459977.html
- C#微信公众号——消息处理
当普通微信用户向公众账号发消息时,微信服务器将POST消息的XML数据包到开发者填写的URL. 一.接收POST请求,处理XML信息 public void ProcessRequest(HttpC ...
- io使用的设计模式
File f = new File("c:/a.txt"); 1. FileInputStream fis = new FileInputStream(f); 2. Reader ...
- Java-NIO(四):通道(Channel)的原理与获取
通道(Channel): 由java.nio.channels包定义的,Channel表示IO源与目标打开的连接,Channel类似于传统的“流”,只不过Channel本身不能直接访问数据,Chann ...
- Hibernate(六):映射一对多关联关系、双向一对多映射
在领域模型中,类与类之间最普通的关系就是关联关系. 在UML中,关联是有方向的: 例如:Customer与Order,一个用户能发出多个订单,而一个订单只能属于一个用户. 单向关联 1)从Order到 ...
- Python3NumPy——数组(1)之创建
开篇 numpy库作为科学计算的基础库,其地位相当重要,它是对数组操作的基石.它的存在使得线性代数以及矩阵论等相关知识在计算机上的表达更加方便与简单,集中体现出了人想办法,计算机去工作. Python ...