bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]
3509: [CodeChef] COUNTARI
题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数
\(2*a[j]\)不太好处理,暴力fft不如直接暴力
考虑分块
每个块用生成函数统计j在块中ik在两边的块中的
有两个在块中或者三个都在暴力统计,实时维护两边权值出现次数
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <ctime>
using namespace std;
typedef long long ll;
const int N = (1<<16) + 5, M = 1e5+5;
const double PI = acos(-1.0);
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
struct meow{
double x, y;
meow(double a=0, double b=0):x(a), y(b){}
};
meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
meow operator *(meow a, meow b) {return meow(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd;
namespace fft {
int n, rev[N];
cd omega[N], omegaInv[N];
void init(int lim) {
n = 1; while(n < lim) n <<= 1;
for(int i=0; i<n; i++) {
omega[i] = cd(cos(2*PI/n*i), sin(2*PI/n*i));
omegaInv[i] = conj(omega[i]);
}
}
void dft(cd *a, int n, int flag) {
cd *w = flag == 1 ? omega : omegaInv;
int k = 0; while((1<<k) < n) k++;
for(int i=0; i<n; i++) {
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
if(i < rev[i]) swap(a[i], a[rev[i]]);
}
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
for(cd *p = a; p != a+n; p += l)
for(int k=0; k<m; k++) {
cd t = w[n/l*k] * p[k+m];
p[k+m] = p[k] - t;
p[k] = p[k] + t;
}
}
if(flag == -1) for(int i=0; i<n; i++) a[i].x /= n;
}
void mul(cd *a, cd *b) {
dft(a, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) a[i] = a[i] * b[i];
dft(a, n, -1);
}
}
int n, a[M], c1[N], c2[N], block, m;
cd p[N], q[N];
ll ans;
int main() {
freopen("in", "r", stdin);
n=read();
block = min(n, 8 * (int) sqrt(n));
for(int i=1; i<=n; i++) a[i] = read(), c2[a[i]]++, m = max(m, a[i]);
fft::init(m+m+1);
for(int l=1; l<=n; l+=block) {
int r = min(n, l+block-1);
for(int i=l; i<=r; i++) c2[a[i]]--;
for(int i=l; i<=r; i++) {
for(int j=i+1; j<=r; j++) {
int t = (a[j]<<1) - a[i];
if(t >= 0) ans += c2[t];
t = (a[i]<<1) - a[j];
if(t >= 0) ans += c1[t];
}
c1[a[i]]++;
}
//printf("hi [%d, %d] %lld\n", l, r, ans);
}
for(int l=1; l<=n; l+=block) { //printf("l %d\n", l);
int r = min(n, l+block-1);
memset(p, 0, sizeof(p)); memset(q, 0, sizeof(q));
for(int i=1; i<l; i++) p[a[i]].x ++;
for(int i=r+1; i<=n; i++) q[a[i]].x ++;
fft::mul(p, q);
for(int i=l; i<=r; i++) ans += (ll) floor(p[a[i]<<1].x + 0.5);
}
printf("%lld", ans);
//printf("\n%lf", (double) clock() / CLOCKS_PER_SEC);
}
bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]的更多相关文章
- BZOJ 3509 [CodeChef] COUNTARI ——分块 FFT
分块大法好. 块内暴力,块外FFT. 弃疗了,抄SX队长$silvernebula$的代码 #include <map> #include <cmath> #include & ...
- [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)
[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...
- BZOJ 3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 883 Solved: 250[Submit][S ...
- BZOJ3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 339 Solved: 85[Submit][St ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- BZOJ3509 [CodeChef] COUNTARI 【分块 + fft】
题目链接 BZOJ3509 题解 化一下式子,就是 \[2A[j] = A[i] + A[k]\] 所以我们对一个位置两边的数构成的生成函数相乘即可 但是由于这样做是\(O(n^2logn)\)的,我 ...
- CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)
题目 Source http://vjudge.net/problem/142058 Description Given N integers A1, A2, …. AN, Dexter wants ...
- CodeChef - COUNTARI FTT+分块
Arithmetic Progressions Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can ch ...
- BZOJ 3509 分块FFT
思路: 跟今年WC的题几乎一样 (但是这道题有重 不能用bitset水过去) 正解:分块FFT http://blog.csdn.net/geotcbrl/article/details/506364 ...
随机推荐
- Newbit 启用淘宝店域名
自2016-10-19起,我们正式启用淘宝店的域名,newbit.taobao.com 店里提供所有课程当中用到硬件,ZigBee插件/贴片模块等, 我们将坚持给大家提供最具扩展性,最方便使用的开发工 ...
- UEP-保存
uep的保存操作分为ajaxgrid和ajaxform两种方式 1.ajaxgrid public void storeInfoSave(){ try { //两个dataWrap 一个dataWra ...
- Hibernate查询对象的方法浅析
Hibernate 查询对象是根据对象的id查询的,只要你有id (id唯一),则无论你是否其他字段与传过来的对象一致,都会查到该id在数据库对应的对象.若是在关联查询中,所关联表的id为空,即所查表 ...
- 【开发技术】如何查看项目中struts的版本
struts-configer.xml(struts1)或struts.xml(struts2)中 struts-2.0.dtd处表示版本号
- 2017-06-29(cat tac more less head tail)
cat 查看文件内容 cat -A 相当于-vET的整合参数,可列出一些特殊的字符,而不是空白而已 -b 列出行号,空白行不标号 -E 将结尾的断行字符 $ 显示出来 -n 列出行号,空 ...
- python3 第十章 - 如何进行进制转化
在计算机的世界里,2进制是主流,而在人类的自然世界中,10进制是主流,那么在这之间必然就会存在进制转化的问题.本章我们就来谈谈进制转化,也希望通过本章加深您对前些章所学知识的理解. 原理:先说说关于位 ...
- js禁止开发者工具
$(document).keydown(function() { return key(arguments[0]) }); function key(e) { //f12 var keynum; if ...
- Maven 常用配置
pom.xml基础配置: <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEn ...
- rem与@media 的优缺点
首先: 如果我们在做单独移动端网站或者app的时候 我建议 使用 rem ; 他能让我们在手机各个机型的适配方面:大大减少我们代码的重复性,是我们的代码更兼容. 下面两个图一个调试在常用的机 ...
- remoteViews简介
RemoteViews从字面上看是一种远程视图.RemoteViews具有View的结构,既然是远程View,那么它就可以在其他进程中显示.由于它可以跨进程显示,所以为了能够更新他的界面,Remote ...