Python----多项式回归
多项式线性回归
1、多项式线性方程:
与多元线性回归相比,它只有一个自变量,但有不同次方数。
2、举例:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd dataset = pd.read_csv('data.csv')
#包含自变量的格式应该是矩阵,不然很可能有错误信息
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values #创建线性回归模型
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()#lin_reg线性回归
lin_reg.fit(X, y) #创建多项式回归
from sklearn.preprocessing import PolynomialFeatures #PolynomialFeatures将自变量转换成包含了自变量不同次数的矩阵
poly_reg = PolynomialFeatures(degree = 4)#degree :转化的包含了不同多项式的最高次数为多少,默认为2,则代表默认最高为2
X_poly = poly_reg.fit_transform(X)
lin_reg_2 = LinearRegression()#lin_reg_2多项式回归
lin_reg_2.fit(X_poly, y) #线性回归
plt.scatter(X, y, color = 'red')#实际结果点标红
plt.plot(X, lin_reg.predict(X), color = 'blue')#预测结果线为蓝色
plt.title('Truth or Bluff (Linear Regression)')
plt.xlabel('Position Level')
plt.ylabel('Salary')
plt.show()
#实际情况与预测结果相差很大 #多项式回归模型
#线条更加平滑
X_grid=np.arange(min(X),max(X),0.1)#start :从哪个值开始;stop :到哪个数为止;step :每个点数之间间距为多少
X_grid=X_grid.reshape(len(X_grid),1)#转化为矩阵
plt.scatter(X, y, color = 'red')
plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)), color = 'blue')
plt.title('Truth or Bluff (Polynomial Regression)')
plt.xlabel('Position Level')
plt.ylabel('Salary')
plt.show() #lin_reg已经拟合好的线性回归模型,predict预测,括号中为数据
lin_reg.predict(6.5) lin_reg_2.predict(poly_reg.fit_transform(6.5))
Python----多项式回归的更多相关文章
- 【机器学习】多项式回归python实现
[机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用python实现多项式回归,没有使用sklearn等机器学习框架,目的是帮助理解算 ...
- Python学习之多项式回归
本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理 线性回归的改进版本中的多项式回归.如果您知道线性回归,那么对您来说很简单.如果没有,我将在本文中解释 ...
- python 机器学习多项式回归
现实世界的曲线关系都是通过增加多项式实现的,现在解决多项式回归问题 住房价格样本 样本图像 import matplotlib.font_manager as fm import matplotlib ...
- python实现线性回归
参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 一般而言,这几个包是比较常见的: • matplotlib,用于绘图 • numpy,数组处 ...
- 机器学习:scipy和sklearn中普通最小二乘法与多项式回归的使用对
相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所 ...
- python 实现神经网络算法
注: Scratch是一款由麻省理工学院(MIT) 设计开发的一款面向少年的简易编程工具.这里写链接内容 本文翻译自“IMPLEMENTING A NEURAL NETWORK FRO ...
- python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...
- <转>机器学习系列(9)_机器学习算法一览(附Python和R代码)
转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更 ...
- 【机器学习】多项式回归sklearn实现
[机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用sklearn框架实现多项式回归.使用框架更方便,可以少写很多代码. 使用一个简单 ...
- Python机器学习--回归
线性回归 # -*- coding: utf-8 -*- """ Created on Wed Aug 30 19:55:37 2017 @author: Adminis ...
随机推荐
- Linux中Mysql的简介和安装
MySQL 简介 点击查看MySQL官方网站 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,后来被Sun公司收购,Sun公司后来又被Oracle公司收购,目前属于Oracle旗 ...
- 使用xUnit为.net core程序进行单元测试(1)
导读 为什么要编写自动化测试程序(Automated Tests)? 可以频繁的进行测试 可以在任何时间进行测试,也可以按计划定时进行,例如:可以在半夜进行自动测试. 肯定比人工测试要快. 可以更快速 ...
- 滤波器——BoxBlur均值滤波及其快速实现
个人博客地址:滤波器--BoxBlur均值滤波及其快速实现 动机:卷积核.滤波器.卷积.相关 在数字图像处理的语境里,图像一般是二维或三维的矩阵,卷积核(kernel)和滤波器(filter)通常指代 ...
- Docker进阶之五:容器管理
容器管理 一.创建容器常用选项 docker container --help 指令 描述 资源限制指令 -i, --interactive 交互式 -m,--memory 容器可以使用的最大内存量 ...
- js获取url 中的值,并跳转相应页面
实现方法:一:获取URL带QUESTRING参数的JAVASCRIPT客户端解决方案,相当于asp的request.querystring,PHP的$_GET1.函数: <Script lang ...
- 2017年IT行业测试调查报告
在刚刚过去的2017年, 我们来一起看一下2017年IT行业测试调查报告 还是1到5名测试工程师最多 Test Architects 在北上广一线城市已经出现 https://www.lagou.co ...
- centos 7下安装jdk1.8
本篇文章主要介绍在centos7 环境下安装jdk1.8并配置环境变量. 安装步骤 1.下载网址 https://www.oracle.com/technetwork/java/javase/do ...
- odoo 12企业版与免费社区版的区别,价格策略与技术支持指南的全面解析
Odoo / Ps Cloud收费企业版是对社区版的极大增强,除了增加了很多功能外,最大的功能区别是企业版支持条码而社区版不支持,企业版对手机支持更好.有单独的APP,最重要区别的是企业版提供底层技术 ...
- C# 利用键值对取代Switch...Case语句
swich....case 条件分支多了之后,会严重的破坏程序的美观性. 比如这个 上述代码是用于两个进程之间通信的代码,由于通信的枚举特别的多,所以case的分支特别的多.导致了代码的可读性,可维护 ...
- 解决 Docker Image的UTF-8中文字符集的问题(以Oracle为例)
最近因业务需要,需要搭建一个Oracle数据库,当然Oracle数据库支持Linux,但是在上面搭建很是复杂,所以我想起了Docker ,果然在上面发现了一个OracleDB的镜像,所以下载之,运行, ...