//函数:构造Huffman树HT[2*n-1]
#define MAXVALUE 9999//假设权值不超过9999
#define MAXLEAF 30
#define MAXNODE MAXLEAF*2-1
using namespace std;
#include <iostream> //Using cin or cout
#include <malloc.h> //Using malloc and realloc
#include <stdio.h> //Using c
#include <stdlib.h> typedef struct
{
int weight;//权值
int parent;//父结点下标
int lchild;//左孩子下标
int rchild;//右孩子下标
}HTNode; void HuffmanTree(HTNode HT[], int n)
{
int i,j,x1,x2;
int m1,m2;
for(i=1;i<=n-1;++i)//n-1个非叶子结点
{
m1=m2=MAXVALUE; x1=x2=0; //m1,m2用来记录结点中最小的权值,x1,x2用来记录其左右子树结点
for(j=1;j<n+i;++j)
{ if(HT[j].parent==0)
{ if (HT[j].weight<m1) {m2=m1; x2=x1;m1=HT[j].weight; x1=j;}
else if(HT[j].weight<m2) { m2=HT[j].weight; x2=j;}
}
}
HT[x1].parent=n+i;
HT[x2].parent=n+i;
HT[n+i].weight = HT[x1].weight + HT[x2].weight;
HT[n+i].lchild=x1;
HT[n+i].rchild=x2;
}//外层for循环结束 }
//函数:求Huffman树HT[n]的Huffman编码
#define MAXBIT 20
typedef struct
{
int bit[MAXBIT];
int start;
}HCodeType; void HuffmanCode (HTNode HT[], int n, HCodeType HuffCode[])
{
HCodeType cd; int i,j,c,p;
for(i=1;i<=n;++i)
{
cd.start=n; c=i; p=HT[c].parent;//p为c双亲
while(p!=0)
{
if(HT[p].lchild==c) cd.bit[cd.start]=0;
else cd.bit[cd.start]=1;
cd.start--; c=p; p=HT[c].parent ;//保持p为c双亲
}
for(j=cd.start+1;j<=n;j++) HuffCode[i].bit[j]=cd.bit[j];
HuffCode[i].start=cd.start;
}
for(i=1;i<=n;++i)
{
cout<<"第"<<i<<"个字符的哈夫曼编码为:";
for(int j=HuffCode[i].start+1;j<=n;j++)
{ cout<<HuffCode[i].bit[j];
//printf("%d",HuffCode[i].bit[j]);
}
cout<<endl;
}
}
int main()
{
int n=8;
HTNode HT[MAXNODE];
for(int i=1; i<=2*n-1; ++i) //初始化
{
HT[i].weight=0; HT[i].parent=0;
HT[i].lchild=0; HT[i].rchild=0;
}
for(int i=1;i<=n;++i)
{
cout<<"请输入第"<<i<<"个值为:"<<endl;
scanf("%d",&HT[i].weight);
if(HT[i].weight>=MAXVALUE)
{
printf("超过权值允许的最大值,重新输入!\n");
--i;
}
}
HuffmanTree(HT,n);
HCodeType HuffCode[MAXNODE];
HuffmanCode (HT,n,HuffCode);
}

  

Huffman Tree 简单构造的更多相关文章

  1. 用优先队列构造Huffman Tree及判断是否为最优编码的应用

    前言 我们知道,要构造Huffman Tree,每次都要从堆中弹出最小的两个权重的节点,然后把这两个权重的值相加存放到新的节点中,同时让这两个节点分别成为新节点的左右儿子,再把新节点插入到堆中.假设节 ...

  2. 51nod1117(简单huffman tree)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1117 题意:中文题诶- 思路:简单huffman tree ...

  3. Huffman Tree

    哈夫曼(Huffman)树又称最优二叉树.它是一种带权路径长度最短的树,应用非常广泛. 关于Huffman Tree会涉及到下面的一些概念: 1. 路径和路径长度路径是指在树中从一个结点到另一个结点所 ...

  4. 赫夫曼\哈夫曼\霍夫曼编码 (Huffman Tree)

    哈夫曼树 给定n个权值作为n的叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离 ...

  5. 哈夫曼树(Huffman Tree)与哈夫曼编码

    哈夫曼树(Huffman Tree)与哈夫曼编码(Huffman coding)

  6. 数据结构实习 problem O Huffman Tree

    Huffman Tree 题目描述 对输入的英文大写字母进行统计概率 然后构建哈夫曼树,输出是按照概率降序排序输出Huffman编码. 输入 大写字母个数 n 第一个字母 第二个字母 第三个字母 .. ...

  7. Huffman coding & Huffman tree

    Huffman coding & Huffman tree Huffman coding 哈夫曼编码 / 最优二元前缀码 Huffman tree 哈夫曼树 / 最优二叉树 https://w ...

  8. Huffman树的构造及编码与译码的实现

    哈夫曼树介绍 哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树.所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数) ...

  9. Python---哈夫曼树---Huffman Tree

    今天要讲的是天才哈夫曼的哈夫曼编码,这是树形数据结构的一个典型应用. !!!敲黑板!!!哈夫曼树的构建以及编码方式将是我们的学习重点. 老方式,代码+解释,手把手教你Python完成哈夫曼编码的全过程 ...

随机推荐

  1. .NET高性能编程 - C#如何安全、高效地玩转任何种类的内存之Span的本质(一)。

    前言 作为.net程序员,使用过指针,写过不安全代码吗? 为什么要使用指针,什么时候需要使用它,以及如何安全.高效地使用它? 如果能很好地回答这几个问题,那么就能很好地理解今天了主题了.C#构建了一个 ...

  2. MIP 内容声明

    从搜索结果页点出的 MIP 页面,其页面上的任何内容(包括但不限于广告.在线咨询.统计等组件)均视为在原站点上的投放和使用. MIP (Mobile Instant Pages - 移动网页加速器), ...

  3. 分析Class类和ClassLoader类下的同名方法getResourceAsStream

    在读取本地资源的时候我们经常需要用到输入流,典型的场景就是使用Druid连接池时读取连接池的配置文件.Java为我们提供了读取资源的方法getResourceAsStream(),该方法有三种: Cl ...

  4. .Net Core使用Redis(CSRedis)

    前言 CSRedis是国外大牛写的.git地址:https://github.com/2881099/csredis,让我们看看如果最简单的 使用一下CSRedis吧. 引入NuGet 获取Nuget ...

  5. 数据结构与算法(十):红黑树与TreeMap详细解析

    本文目录 一.为什么要创建红黑树这种数据结构 在上篇我们了解了AVL树,既然已经有了AVL这种平衡的二叉排序树,为什么还要有红黑树呢? AVL树通过定义我们知道要求树中每一个结点的左右子树高度差的绝对 ...

  6. Mybatis插入数据返回主键ID

    <insert id="add" parameterType="com.dsa.core.base.model.ProductSync">      ...

  7. openlayers4 入门开发系列之地图导航控件篇(附源码下载)

    前言 openlayers4 官网的 api 文档介绍地址 openlayers4 api,里面详细的介绍 openlayers4 各个类的介绍,还有就是在线例子:openlayers4 官网在线例子 ...

  8. ArcGIS对SLD样式的支持

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.ArcGISWMS服务对SLD的支持 在完成用geoserver的w ...

  9. Android 里的adb命令

    ADB的全称为Android Debug Bridge,就是起到调试桥的作用. adb调试手机需要把usb调试打开 Android studio模拟器有的也要把模拟器usb调试打开,工具要灵活运用, ...

  10. sql 语句 获取某张表某列字段最短的某几行数据

    sql 语句 获取某张表某列字段最短的某几行数据 SELECT C_name,C_code FROM Catalog where LEN(C_code)=LEN((SELECT top 1 C_cod ...