Sol

首先有个结论

\(\sum_{i=1}^{m}\sum_{j=1}^{n}d(i*j)=\sum_{i=1}^{m}\sum_{j=1}^{n}\sum_{x|i}\sum_{y|i}[gcd(x,y)==1]\)

证明:可以看po姐的博客

接着这个式子推

\[原式=\sum_{x=1}^{n}\sum_{y=1}^{m}([gcd(x, y)==1] * \sum_{x|i}\sum_{y|i} 1)\\
=\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x, y)==1\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor]\\
设f(i)=\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x, y)==i\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor]\\
设g(i)=\sum_{x|d}f(d)
\]

f(i)可以通过莫比乌斯反演求出

考虑求g(i)

\[g(i)=\sum_{i|gcd(x,y)}\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor\\
=\sum_{i|x}\sum_{i|y}\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor\\
=\sum_{x=1}^{\lfloor\frac{n}{i}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{y}\rfloor}\lfloor\frac{n}{x*i}\rfloor\lfloor\frac{m}{y*i}\rfloor\\
换个元=\sum_{i=1}^{x}\sum_{j=1}^{y}\lfloor\frac{x}{i}\rfloor\lfloor\frac{y}{j}\rfloor\\
\]

这个东西\(\sum_{i=1}^{x}\lfloor\frac{x}{i}\rfloor\)就是每个数的倍数的个数和的和,就是每个数约数的个数和的和预处理一下,前缀和一下就好,于是每个g(i)就可以O(1) 求。。。(约数的个数是积性函数,也可以线性筛)

数论分块什么的就不说了

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(5e4 + 1); IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} int prime[_], mu[_], d[_], pred[_], num;
bool isprime[_]; IL void Prepare(){
isprime[1] = 1; mu[1] = d[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]){ prime[++num] = i; mu[i] = -1; d[i] = 2; pred[i] = 1; }
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]){ mu[i * prime[j]] = -mu[i]; d[i * prime[j]] = d[i] * 2; pred[i * prime[j]] = 1; }
else{
mu[i * prime[j]] = 0;
pred[i * prime[j]] = pred[i] + 1;
d[i * prime[j]] = d[i] / (pred[i] + 1) * (pred[i] + 2);
break;
}
}
d[i] += d[i - 1]; mu[i] += mu[i - 1];
}
} int main(RG int argc, RG char *argv[]){
Prepare();
for(RG int T = Read(); T; --T){
RG int n = Read(), m = Read(); RG ll ans = 0;
if(n > m) swap(n, m);
for(RG int i = 1, j; i <= n; i = j + 1){
j = min(n / (n / i), m / (m / i));
ans += 1LL * (mu[j] - mu[i - 1]) * d[n / i] * d[m / i];
}
printf("%lld\n", ans);
}
return 0;
}

[SDOI2015]约数个数和的更多相关文章

  1. BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演

    BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...

  2. P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)

    P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...

  3. 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

    3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...

  4. 洛谷 [SDOI2015]约数个数和 解题报告

    [SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...

  5. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  6. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  7. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  8. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  9. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  10. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

随机推荐

  1. python进阶学习笔记(三)

    3.类的继承 3.1,python中什么是类的继承 答案是肯定的. 也就是说,如果一个实例是一个子类,那么它也是一个父类 总是从某各类继承,如果没有合适的类,就要从object类继承:super(). ...

  2. Netbeans简要配置许可证信息

    <#if licenseFirst??>${licenseFirst}</#if>${licensePrefix}Copyright (C) <2017>  < ...

  3. Service工作过程

    Service两种工作状态的作用 1)启动状态:用于执行后台计算 2)绑定状态:用于其他组件和Service的交互 注意:Service这两种状态可以共存,即Service既可以处于启动状态也可以同时 ...

  4. nyoj161 取石子 (四) 威佐夫博弈

    思路:详细证明见博弈总结 如何判断威佐夫博弈的奇异局势? 对于状态(a, b),c = b - a,如果是奇异局势必定满足 a == c * (1+√5)/ 2. AC代码 #include < ...

  5. hdu1995 汉诺塔V

    可以直接把前K-1个罗盘全部忽略了,因为移动前K-1个罗盘不会影响第K个. 也就是相当于只移动剩下的n-k-1个罗盘,当只移动第k个罗盘时,f(k)=1;当要哟东第k个和第k+1个时,就必须先把第k个 ...

  6. [php] in_array 判断问题(坑)

    <?php $arr = array("Linux"); if (in_array(0, $arr)) { echo "match"; } ?> 执 ...

  7. 关于 Java 面试,你应该准备这些知识点

    来源:占小狼, www.jianshu.com/p/1b2f63a45476 马老师说过,员工的离职原因很多,只有两点最真实: 钱,没给到位 心,受委屈了 当然,我是想换个平台,换个方向,想清楚为什么 ...

  8. 将FTP映射至Windows

    在经常使用ftp传输文件的环境中,每次上传和下载文件都需要重新连接然后登录是非常繁琐的一件事情.我们可以将FTP空间映射到本地磁盘空间,免去输入地址以及账号.密码.方便我们日常中文件的上传和下载. 1 ...

  9. SQL语句学习

    看似简单,但其实包含很多技巧思维 1.查询课程表中所有科目大于80的学生 select distinct name from student where name not in (select nam ...

  10. pyinstaller打包py文件成exe文件时,出现ImportError: No module named 'pefile'错误解决办法!

    首先pyinstaller的安装与使用详见如下链接: 安装完成之后,命令行中输入pyinstaller之后,结果如下: ImportError: No module named 'pefile' 缺少 ...