Sol

首先有个结论

\(\sum_{i=1}^{m}\sum_{j=1}^{n}d(i*j)=\sum_{i=1}^{m}\sum_{j=1}^{n}\sum_{x|i}\sum_{y|i}[gcd(x,y)==1]\)

证明:可以看po姐的博客

接着这个式子推

\[原式=\sum_{x=1}^{n}\sum_{y=1}^{m}([gcd(x, y)==1] * \sum_{x|i}\sum_{y|i} 1)\\
=\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x, y)==1\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor]\\
设f(i)=\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x, y)==i\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor]\\
设g(i)=\sum_{x|d}f(d)
\]

f(i)可以通过莫比乌斯反演求出

考虑求g(i)

\[g(i)=\sum_{i|gcd(x,y)}\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor\\
=\sum_{i|x}\sum_{i|y}\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor\\
=\sum_{x=1}^{\lfloor\frac{n}{i}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{y}\rfloor}\lfloor\frac{n}{x*i}\rfloor\lfloor\frac{m}{y*i}\rfloor\\
换个元=\sum_{i=1}^{x}\sum_{j=1}^{y}\lfloor\frac{x}{i}\rfloor\lfloor\frac{y}{j}\rfloor\\
\]

这个东西\(\sum_{i=1}^{x}\lfloor\frac{x}{i}\rfloor\)就是每个数的倍数的个数和的和,就是每个数约数的个数和的和预处理一下,前缀和一下就好,于是每个g(i)就可以O(1) 求。。。(约数的个数是积性函数,也可以线性筛)

数论分块什么的就不说了

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(5e4 + 1); IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} int prime[_], mu[_], d[_], pred[_], num;
bool isprime[_]; IL void Prepare(){
isprime[1] = 1; mu[1] = d[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]){ prime[++num] = i; mu[i] = -1; d[i] = 2; pred[i] = 1; }
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]){ mu[i * prime[j]] = -mu[i]; d[i * prime[j]] = d[i] * 2; pred[i * prime[j]] = 1; }
else{
mu[i * prime[j]] = 0;
pred[i * prime[j]] = pred[i] + 1;
d[i * prime[j]] = d[i] / (pred[i] + 1) * (pred[i] + 2);
break;
}
}
d[i] += d[i - 1]; mu[i] += mu[i - 1];
}
} int main(RG int argc, RG char *argv[]){
Prepare();
for(RG int T = Read(); T; --T){
RG int n = Read(), m = Read(); RG ll ans = 0;
if(n > m) swap(n, m);
for(RG int i = 1, j; i <= n; i = j + 1){
j = min(n / (n / i), m / (m / i));
ans += 1LL * (mu[j] - mu[i - 1]) * d[n / i] * d[m / i];
}
printf("%lld\n", ans);
}
return 0;
}

[SDOI2015]约数个数和的更多相关文章

  1. BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演

    BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...

  2. P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)

    P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...

  3. 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

    3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...

  4. 洛谷 [SDOI2015]约数个数和 解题报告

    [SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...

  5. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  6. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  7. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  8. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  9. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  10. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

随机推荐

  1. ansible 拷贝文件并重启服务

    Ansible 安装 只需要在ansible 服务器上安装 yum install -y epel-release yum install -y ansible     服务器生成密钥对 ssh-ke ...

  2. css中的关于margin-top,position和z-index的一些bug解决方案

    这两天在写一个demo的时候,就碰到一些css的问题,不知道能不能算bug,很有可能是因为我写的代码太少,孤陋寡闻了_(:зゝ∠)_.记录一下,以防下次遇到同样问题. 进入正题: 1.问题描述:div ...

  3. npm注意事项(附带Vue-cli安装)

    下载完nodeJS后,可选择更改配置目录 1.npm config set prefix "D:\node\node-global"<!--配置全局安装目录--> 2. ...

  4. Mybatis学习之道(一)

    本例子为采用的mysql+maven+mybatis构建. 初步学习mybatis: mybatis为一个半自动框架,相对于hibernate来说他更加轻巧,学习成本更低. 1.新建一个maven工程 ...

  5. Flask從入門到入土(一)——程序的基本結構

    一.初始化 所有Flask程序都必須創建一個程序實例.Web服務器使用一種名爲Web服務器網關接口的協議,把接收自客戶端的所有請求都轉交給這個對象處理.程序實例書Flask類的對象,創建代碼: fro ...

  6. python str与bytes之间的转换

    # bytes object b = b"example" # str object s = "example" # str to bytes bytes(s, ...

  7. 由select引发的思考

    一.前言 网络编程里一个经典的问题,selec,poll和epoll的区别?这个问题刚学习编程时就接触了,当时看了材料很不明白,许多概念和思想没有体会,现在在这个阶段,再重新回头看这个问题,有一种豁然 ...

  8. 算法提高 矩阵乘法 区间DP

    这是神题,n <= 1000,如果是极限数据普通的n^3区间DP怎么可能过?可偏偏就过了. 刘汝佳大哥的训练指南上面说的存在nlgn的算法解决矩阵链乘问题,可是百度都找不到.... AC代码 # ...

  9. 阿里舆情︱舆情热词分析架构简述(Demo学习)

    本节来源于阿里云栖社区,同时正在开发一个舆情平台,其中他们发布了一篇他们所做的分析流程,感觉可以作为案例来学习.文章来源:觉民cloud/云栖社区 平台试用链接:https://prophet.dat ...

  10. 【linux】 vsftpd自动

    开机默认VSFTP服务自动启动: 方法一-常用方便的方法 [root@localhost /]# chkconfig --list|grep vsftpd vsftpd          0:off ...