[ZJOI 2010]count 数字计数
Description
问你 \([l,r]\) 区间内所有整数中各个数码出现了多少次。
\(1\leq a\leq b\leq 10^{12}\)
Solution
数位 \(DP\) 。
定义一个函数 \(cal(i)\) 为求 \([1,i)\) 中所有整数各个数码的和。显然答案就是 \(cal(r+1)-cal(l)\) 。
考虑如何求 \(cal(x)\) 。
先考虑数的位数小于 \(x\) 的情况。假设 \(x\) 的总位数为 \(tot\) 。我们可以从 \(1\sim tol-1\) 来枚举最高位。对于每次枚举的最高位 \(i\) ,显然最高位上的每个数都会计算 \(10^{i-1}\) 次, \(0\) 除外。再考虑以其为最高位开头。之后的所有数码产生的新贡献为 \(9(i-1)\cdot 10^{i-2}\) 其中 \(9\) 表示最高位有 \([1,9]\) 这 \(9\) 个数; \(i-1\) 表示之后共有 \(i-1\) 位。 \(10^{i-2}\) 指的是每一位会产生贡献(推推式子可以证明后面的每一位的数码出现频率是相同的)。
最高位等于 \(tot\) 的情况和上面是类似的,假设 \(x_i\) 为 \(x\) 的第 \(i\) 位上的数字。显然对于小于 \(x_i\) 的所有数码(包括除最高位外的 \(0\) ),都会计算 \(10^{i-1}\) 次。而 \(x_i\) 只会计算 \(last\) 次,其中 \(last\) 为 \(i\) 位之后的数字;之后的所有数码产生的新贡献和上面类似,详可见代码。
Code
//It is made by Awson on 2018.2.28
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
void read(LL &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); }
LL x, y, cnt[15];
void cal(LL x) {
LL a[20], tot = 0, mi = 1, last = 0; while (x) a[++tot] = x%10, x /= 10;
for (int i = 1; i < tot; i++) {
for (int d = 1; d < 10; d++) cnt[d] += mi;
for (int d = 0; d < 10; d++) cnt[d] += mi*9/10*(i-1); mi *= 10;
}
mi = 1;
for (int i = 1; i <= tot; i++) {
cnt[a[i]] += last; int begin = (i == tot);
for (int d = begin; d < a[i]; d++) cnt[d] += mi;
if (a[i]) for (int d = 0; d < 10; d++) cnt[d] += mi*(a[i]-begin)/10*(i-1);
last += mi*a[i], mi *= 10;
}
}
void work() {
read(x), read(y);
cal(x); for (int i = 0; i < 10; i++) cnt[i] = -cnt[i];
cal(y+1); for (int i = 0; i < 9; i++) write(cnt[i]), putchar(' '); writeln(cnt[9]);
}
int main() {
work(); return 0;
}
[ZJOI 2010]count 数字计数的更多相关文章
- 【BZOJ-1833】count数字计数 数位DP
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2494 Solved: 1101[Submit][ ...
- [BZOJ1833][ZJOI2010]count 数字计数
[BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...
- BZOJ 1833: [ZJOI2010]count 数字计数( dp )
dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...
- 1833: [ZJOI2010]count 数字计数
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2951 Solved: 1307[Submit][ ...
- BZOJ_1833_[ZJOI2010]count 数字计数_数位DP
BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...
- BZOJ1833 ZJOI2010 count 数字计数 【数位DP】
BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- 【BZOJ】1833 [ZJOI2010]count 数字计数
[算法]数位DP [题解] 记忆化搜索 #include<cstdio> #include<algorithm> #include<cstring> #define ...
- 1833: [ZJOI2010]count 数字计数 - BZOJ
Description给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次.Input输入文件中仅包含一行两个整数a.b,含义如上所述.Output输出文件中包含一 ...
随机推荐
- Redux----Regular的Redux实现整理
Regular的Redux实现整理 什么问题? 组件的树形结构决定了数据的流向,导致的数据传递黑洞 怎么解决? 所有组件都通过中介者传递共享数据 方案: 中介者: (function create ...
- C语言第二周作业——分支结构
一.PTA实验作业 题目1.7-1计算分段函数 本题目要求计算下列分段函数f(x)的值: 1实验代码 double x,result; scanf("%lf",&x); i ...
- 201621123062《java程序设计》第13周作业总结
1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 思维导图: 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以被多 ...
- JAVA_SE基础——37.main方法的详解
主函数 大家都会写吧. 大家一直都不知道为何这样设计,这样设计有什么好处呢? 白话解释: main函数的修饰符是public: 公共的 为何不用private 等等的修饰符 而规定只用public呢? ...
- 帧动画的创建方式 - 纯Java代码方式
废话不多说,先看东西 帧动画的创建方式主要以下2种: * 用xml创建动画: * 纯Java代码创建动画: 本文内容主要关注 纯java代码创建帧动画 的方式: 用xml创建帧动画:http:// ...
- vSphere Client 搭建Windows server 2008 r2 服务器指南
下载准备 下载并安装vSphere Client 链接:https://pan.baidu.com/s/1v0IrGrMjpA2FGeqagaJN-g 密码:zzd1 下载Windows server ...
- 详解get请求和post请求参数中文乱码的解决办法
首先出现中文乱码的原因是tomcat默认的编码方式是"ISO-8859-1",这种编码方式以单个字节作为一个字符,而汉字是以两个字节表示一个字符的. 一,get请求参数中文乱码的解 ...
- python爬虫requests 下载图片
import requests # 这是一个图片的url url = 'http://yun.itheima.com/Upload/Images/20170614/594106ee6ace5.jpg' ...
- JavaScript实现接口的三种经典方式
/* 接口:提供一种说明一个对象应该有哪些方法的手段 js中有三种方式实现接口: 1 注释描述接口 2 属性检测接口 3 鸭式辨型接口 */ /* 1 注释描述接口: 不推荐 优点: 利用注解,给出参 ...
- python、java实现二叉树,细说二叉树添加节点、深度优先(先序、中序、后续)遍历 、广度优先 遍历算法
数据结构可以说是编程的内功心法,掌握好数据结构真的非常重要.目前基本上流行的数据结构都是c和c++版本的,我最近在学习python,尝试着用python实现了二叉树的基本操作.写下一篇博文,总结一下, ...