BZOJ_2724_[Violet 6]蒲公英_分块
BZOJ_2724_[Violet 6]蒲公英_分块
Description
Input
修正一下
l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1
Output
Sample Input
1 2 3 2 1 2
1 5
3 6
1 5
Sample Output
2
1
HINT
n <= 40000, m <= 50000
对于众数,有一个性质。集合A和集合B的众数,要么是集合A的众数,要么是集合B中出现过的数。
根据这个性质我们考虑分块。
先将权值离散化,处理出前缀桶C[i][j]表示1~i块j数出现的次数。
在处理出mode[i][j]表示i块到j块的众数,这两个都可以在O(nsqrt(n))的时间内处理出来。
查询时众数来源有两个,所有整块的众数和零散块内出现过的数。
把零散的每个数统计一下,用桶可以O(1)得到答案。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
#define N 40050
struct A {
int num,id,v;
}a[N];
bool cmp1(const A &x,const A &y){return x.num<y.num;}
bool cmp2(const A &x,const A &y){return x.id<y.id;}
int n,m,block,pos[N],L[250],R[250],size,mode[250][250],C[250][N],mp[N],times[250][250],ans;
int h[N];
void solve(int l,int r) {
int p=pos[l],q=pos[r];
int md=0,i;
if(p==q||p+1==q) {
for(i=l;i<=r;i++) {
h[a[i].v]++;
if(h[a[i].v]>h[md]||(h[a[i].v]==h[md]&&a[i].v<md))
md=a[i].v;
}
for(i=l;i<=r;i++) {
h[a[i].v]=0;
}
ans=mp[md];
return ;
}
int nowmode=mode[p+1][q-1],mtimes=times[p+1][q-1];
h[nowmode]=mtimes;
int tmp=nowmode;
//printf("nowmode=%d, mtimes=%d\n",nowmode,mtimes);
for(i=l;i<=R[p];i++) {
if(!h[a[i].v]) {
h[a[i].v]=C[q-1][a[i].v]-C[p][a[i].v];
}
h[a[i].v]++;
//printf("a[i].v=%d h[a[i].v]=%d\n",a[i].v,h[a[i].v]);
if(h[a[i].v]>mtimes||(h[a[i].v]==mtimes&&a[i].v<nowmode)) {
mtimes=h[a[i].v]; nowmode=a[i].v;
}
}
for(i=L[q];i<=r;i++) {
if(!h[a[i].v]) {
h[a[i].v]=C[q-1][a[i].v]-C[p][a[i].v];
}
h[a[i].v]++;
if(h[a[i].v]>mtimes||(h[a[i].v]==mtimes&&a[i].v<nowmode)) {
mtimes=h[a[i].v]; nowmode=a[i].v;
}
}
for(i=l;i<=R[p];i++) h[a[i].v]=0;
for(i=L[q];i<=r;i++) h[a[i].v]=0;
h[tmp]=0;
ans=mp[nowmode];
}
int main() {
scanf("%d%d",&n,&m);
int i,j,k,x,y;
for(i=1;i<=n;i++) scanf("%d",&a[i].num),a[i].id=i;
sort(a+1,a+n+1,cmp1); a[0].num=342344354;
for(i=1,j=0;i<=n;i++) {
if(a[i].num!=a[i-1].num) j++;
a[i].v=j;
mp[j]=a[i].num;
}
sort(a+1,a+n+1,cmp2);
size=sqrt(n);
block=n/size;
for(i=1;i<=block;i++) {
L[i]=R[i-1]+1; R[i]=i*size;
for(j=L[i];j<=R[i];j++) {
pos[j]=i;
/*if(!C[i][a[j].v]) {
C[i][a[j].v]=C[i-1][a[j].v];
}*/
C[i][a[j].v]++;
}
for(j=1;j<=R[i];j++) {
C[i+1][a[j].v]=C[i][a[j].v];
}
}
if(R[block]!=n) {
block++; L[block]=R[block-1]+1; R[block]=n;
for(i=L[block];i<=n;i++) {
pos[i]=block;
/*if(!C[block][a[i].v]) {
C[block][a[i].v]=C[block-1][a[i].v];
}*/
C[block][a[i].v]++;
}
}
for(i=1;i<=block;i++) {
int md=0;
for(j=L[i];j<=R[i];j++) {
if(C[i][a[j].v]-C[i-1][a[j].v]>C[i][md]-C[i-1][md]||(C[i][a[j].v]-C[i-1][a[j].v]==C[i][md]-C[i-1][md]&&a[j].v<md))
md=a[j].v;
}
mode[i][i]=md; times[i][i]=C[i][md]-C[i-1][md];
for(j=i+1;j<=block;j++) {
int md=mode[i][j-1];
for(k=L[j];k<=R[j];k++) {
if(C[j][a[k].v]-C[i-1][a[k].v]>C[j][md]-C[i-1][md]||(C[j][a[k].v]-C[i-1][a[k].v]==C[j][md]-C[i-1][md]&&a[k].v<md))
md=a[k].v;
}
mode[i][j]=md; times[i][j]=C[j][md]-C[i-1][md];
}
}
//for(i=1;i<=n;i++) printf("i=%d pos[i]=%d\n",i,pos[i]);
while(m--) {
scanf("%d%d",&x,&y);
x=(x+ans-1)%n+1; y=(y+ans-1)%n+1;
if(x>y) swap(x,y);
solve(x,y);
printf("%d\n",ans);
}
}
BZOJ_2724_[Violet 6]蒲公英_分块的更多相关文章
- [BZOJ 2724] [Violet 6] 蒲公英 【分块】
题目链接:BZOJ - 2724 题目分析 这道题和 BZOJ-2821 作诗 那道题几乎是一样的,就是直接分块,每块大小 sqrt(n) ,然后将数字按照数值为第一关键字,位置为第二关键字排序,方便 ...
- BZOJ.2724.[Violet 6]蒲公英(静态分块)
题目链接 区间众数 强制在线 考虑什么样的数会成为众数 如果一个区间S1的众数为x,那么S1与新区间S2的并的众数只会是x或S2中的数 所以我们可以分块先预处理f[i][j]表示第i到第j块的众数 对 ...
- bzoj2724: [Violet 6]蒲公英(分块)
传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...
- bzoj2724: [Violet 6]蒲公英(离散化+分块)
我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...
- BZOJ 2724: [Violet 6]蒲公英( 分块 )
虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...
- 【BZOJ2724】[Violet 6]蒲公英 分块+二分
[BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...
- 「Violet」蒲公英
「Violet」蒲公英 传送门 区间众数,强制在线. 分块经典题. 像这题一样预处理,然后就直接爆搞,复杂度 \(O(n \sqrt n)\) 参考代码: #include <algorithm ...
- BZOJ 2724: [Violet 6]蒲公英
2724: [Violet 6]蒲公英 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1633 Solved: 563[Submit][Status ...
- [BZOJ2724][Violet 6]蒲公英
[BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...
随机推荐
- GitHub Desktop 如何创建本地仓库,上传代码,删除仓库
1.创建本地仓库 2.打开本地仓库,将要上传的文件放到本地仓库. 3.ctrl+p push仓库或者菜单栏Repository下push也可以用右上角的publish respository 4.左边 ...
- Python_linux环境变量和软链接(个人理解)
--------------------------------------- 最近在服务器上想运行个脚本,装了个python3.6,但是他还自带了个2.7版本,后来发现上面还有3.5版本的pytho ...
- JAVA 综合面试题
JAVA 综合面试题 2007-08-12 目录 TOC \o "1-3" \h \z \u Java面试题整理 9 Java面向对象 9 1. super()与this()的区别 ...
- maven jsp out.print()request.getParameter() 爆红
如图: 解决方案: 在pom文件中添加依赖: <!-- https://mvnrepository.com/artifact/javax.servlet.jsp/jsp-api -->&l ...
- 八爪鱼在哪里设置xpath
分享:35个做好的爬虫规则+160篇图文教程汇总 一般在八爪鱼中,获取网页上某个元素的XPATH有以下几种方式:一.在内置浏览器中点选的操作,八爪鱼自动识别XPATH.但是有时候,自动识别的可能不准确 ...
- PCA算法和python实现
第十三章 利用PCA来简化数据 一.降维技术 当数据的特征很多的时候,我们把一个特征看做是一维的话,我们数据就有很高的维度.高维数据会带来计算困难等一系列的问题,因此我们需要进行降维.降维的好处有很多 ...
- Java面向对象进阶篇(内部类)
一. 概念 大部分时候,类被定义成一个独立的程序单元.有时候把一个类放在另一个类内部定义,这个类被称为内部类,包含内部类的类也被称为外部类. 内部类的主要作用: 内部类提供良好的封装,可以把内部类隐藏 ...
- Java开源生鲜电商平台-订单表的设计(源码可下载)
Java开源生鲜电商平台-订单表的设计(源码可下载) 场景分析说明: 买家(餐馆)用户,通过APP进行选菜,放入购物车,然后下单,最终支付的流程,我们称为下单过程. 买家可以在张三家买茄子,李四家买萝 ...
- ResultSet只返回一行数据的原因
写之前,先告戒一下自己......写代码一定要细心,自己写的即使是非常简单的地方也要细心,不能自我感觉太良好,那往往可能会有些bug在等着你...... 注意事项: 1.当你为了查看数据库中是否存在某 ...
- 使用on-my-zsh时,php 输出内容后面多个%号
今天用php写个命令行的小工具时,突然发现在echo输出后,总是会多个%号,开始以为是代码的问题,然后新建了一个代码文件: <?php echo 'hello world'; 输出结果: hel ...