深入理解DirectByteBuffer
介绍
最近在工作中使用到了DirectBuffer来进行临时数据的存放,由于使用的是堆外内存,省去了数据到内核的拷贝,因此效率比用ByteBuffer要高不少。之前看过许多介绍DirectBuffer的文章,在这里从源码的角度上来看一下DirectBuffer的原理。
用户态和内核态
Intel的 X86架构下,为了实现外部应用程序与操作系统运行时的隔离,分为了Ring0-Ring3四种级别的运行模式。Linux/Unix只使用了Ring0和Ring3两个级别。Ring0被称为用户态,Ring3被称为内核态。普通的应用程序只能运行在Ring3,并且不能访问Ring0的地址空间。操作系统运行在Ring0,并提供系统调用供用户态的程序使用。如果用户态的程序的某一个操作需要内核态来协助完成(例如读取磁盘上的某一段数据),那么用户态的程序就会通过系统调用来调用内核态的接口,请求操作系统来完成某种操作。
下图是用户态调用内核态的示意图:
DirectBuffer的创建
使用下面一行代码就可以创建一个1024字节的DirectBuffer:
1 |
ByteBuffer.allocateDirect(1024); |
该方法调用的是new DirectByteBuffer(int cap)。DirectByteBuffer的构造函数是包级私有的,因此外部是调用不到的。
下面我们来看一下这行代码背后的逻辑:
1 |
DirectByteBuffer(int cap) { // package-private
|
DirectBuffer的构造函数主要做以下三个事情:
1、根据页对齐和pageSize来确定本次的要分配内存实际大小
2、实际分配内存,并且记录分配的内存大小
3、声明一个Cleaner对象用于清理该DirectBuffer内存
需要注意的是DirectBuffer的创建是比较耗时的,所以在一些高性能的中间件或者应用下一般会做一个对象池,用于重复利用DirectBuffer。
DirectBuffer的使用
查看DirectBuffer类的方法声明,对于DirectBuffer的使用主要有两类方法,putXXX和getXXX。
putXXX方法(以putInt为例):
1 |
public ByteBuffer putInt(int x) {
|
putInt方法会根据是否是内存对齐分别调用unsafe.putInt或者Bits.putInt来把数据放到直接内存中。Bits.putInt实际上会根据是大端或者是小端来区分如何把数据放到直接内存中,放的方式同样是调用unsage.putInt。
getXXX方法(以getInt为例):
1 |
public int getInt() {
|
首先判断是否是页对齐,如果不是页对齐,那么直接通过unsafe.getInt来获取数据;如果是页对齐,那么通过Bits.getInt方法来获取数据。Bits.getInt同样是根据大端还是小端,调用unsafe.getInt来获取数据。
DirectBuffer内存回收
DirectBuffer内存回收主要有两种方式,一种是通过System.gc来回收,另一种是通过构造函数里创建的Cleaner对象来回收。
System.gc回收
在DirectBuffer的构造函数中,用到了Bit.reserveMemory这个方法,该方法如下
1 |
static void reserveMemory(long size, int cap) {
|
reserveMemory方法首先尝试分配内存,如果分配成功的话,那么就直接退出。如果分配失败那么就通过调用tryHandlePendingReference来尝试清理堆外内存(最终调用的是Cleaner的clean方法,其实就是unsafe.freeMemory然后释放内存),清理完内存之后再尝试分配内存。如果还是失败,调用System.gc()来触发一次FullGC进行回收(前提是没有加-XX:-+DisableExplicitGC参数)。GC完之后再进行内存分配,失败的话就会进行sleep,然后再进行尝试。每次sleep的时间是逐步增加的,规律是1, 2, 4, 8, 16, 32, 64, 128, 256 (total 511 ms ~ 0.5 s)。如果最终还没有可分配的内存,那么就会抛出OOM异常。
为什么是通过调用tryHandlePendingReference来回收内存呢?答案是JVM在判断内存不可达之后会把需要GC的不可达对象放在一个PendingList中,然后应用程序就可以看到这些对象。通过调用tryHandlePendingReference来访问这些不可达对象。如果不可达对象是Cleaner类型,也就是说关联了堆外的DirectBuffer,那么该DirectBuffer就可以被回收了,通过调用Cleaner的clean方法来回收这部分堆外内存。
这个逻辑就是进行堆外内存分配时触发的回收内存逻辑,也就是说在分配的时候如果遇到堆外内存不足,可能会触发FullGC,然后尝试进行分配。这也是为什么在一些用到堆外内存的应用中不建议加上-XX:-+DisableExplicitGC参数。
Cleaner对象回收
另个触发堆外内存回收的时机是通过Cleaner对象的clean方法进行回收。在每次新建一个DirectBuffer对象的时候,会同时创建一个Cleaner对象,同一个进程创建的所有的DirectBuffer对象跟Cleaner对象的个数是一样的,并且所有的Cleaner对象会组成一个链表,前后相连。
1 |
public static Cleaner create(Object ob, Runnable thunk) {
|
Cleaner对象的clean方法执行时机是JVM在判断该Cleaner对象关联的DirectBuffer已经不被任何对象引用了(也就是经过可达性分析判定为不可达的时候)。此时Cleaner对象会被JVM挂到PendingList上。然后有一个固定的线程扫描这个List,如果遇到Cleaner对象,那么就执行clean方法。
DirectBuffer在一些高性能的中间件上使用还是相当广泛的。正确的使用可以提升程序的性能,降低GC的频率。
----------------------------------------------------------------------------------------------
欢迎关注我的微信公众号:yunxi-talk,分享Java干货,进阶Java程序员必备。

深入理解DirectByteBuffer的更多相关文章
- 《深入理解 java虚拟机》学习笔记
java内存区域详解 以下内容参考自<深入理解 java虚拟机 JVM高级特性与最佳实践>,其中图片大多取自网络与本书,以供学习和参考.
- 深入理解jvm
Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来. 概述: 对于从事C.C++程序开发的开发人员来说,在内存管理领域,他们即是拥有最高权力的皇帝 ...
- 深入理解jvm之内存区域与内存溢出
文章目录 1. Java内存区域与内存溢出异常 1.1. 运行时数据区域 1.1.1. 程序计数器 1.1.2. java虚拟机栈 1.1.3. 本地方法栈 1.1.4. Java堆(Java Hea ...
- 《深入理解JAVA虚拟机》笔记1
java程序运行时的内存空间,按照虚拟机规范有下面几项: )程序计数器 指示下条命令执行地址.当然是线程私有,不然线程怎么能并行的起来. 不重要,占内存很小,忽略不计. )方法区 这个名字很让我迷惑. ...
- 深入理解Java NIO
初识NIO: 在 JDK 1. 4 中 新 加入 了 NIO( New Input/ Output) 类, 引入了一种基于通道和缓冲区的 I/O 方式,它可以使用 Native 函数库直接分配堆外内存 ...
- 《深入理解Java虚拟机》-----第2章 Java内存区域与内存溢出异常
2.1 概述 对于从事C.C++程序开发的开发人员来说,在内存管理领域,他们即是拥有最高权力的皇帝又是执行最基础工作的劳动人民——拥有每一个对象的“所有权”,又担负着每一个对象生命开始到终结的维护责任 ...
- 深入理解java虚拟机(一)-----java内存区域以及内存溢出异常
概述 Java语言的一个非常重要的特点就是与平台的无关性.而使用Java虚拟机是实现这一特点的关键.一般的高级语言如果要在不同的平台上运行,至少需要编译成不同的目标代码.而引入Java语言虚拟机后,J ...
- 深入理解JAVA中的NIO
前言: 传统的 IO 流还是有很多缺陷的,尤其它的阻塞性加上磁盘读写本来就慢,会导致 CPU 使用效率大大降低. 所以,jdk 1.4 发布了 NIO 包,NIO 的文件读写设计颠覆了传统 IO 的设 ...
- 深入理解JVM虚拟机:(一)Java运行时数据区域
概述 JVM是Java语言的精髓所在,因为它Java语言实现了跨平台运行,以及自动内存管理机制等,本文将从概念上介绍JVM内存的各个区域,说明个区域的作用. JVM运行时数据区模型 Java虚拟机在执 ...
随机推荐
- 蛋疼zipline安装
比安装zipline更让人蛋疼的是,网上的教程没有一个是TM对的,真的是忍不住要吐血. 真的是一步一坑,一步一坑 安装环境: Windows7旗舰版,64位系统 python 版本3.5.3 我没有用 ...
- Web开发笔记
jquery ui draggable clone之后不会克隆draggable功能,要重新设置
- 卷积神经网络(CNN)中卷积的实现
卷积运算本质上就是在滤波器和输入数据的局部区域间做点积,最直观明了的方法就是用滑窗的方式,c++简单实现如下: 输入:imput[IC][IH][IW] IC = input.channels IH ...
- JavaScript数据结构与算法(二) 队列的实现
TypeScript方式源码 class Queue { items = []; public enqueue(element) { this.items.push(element); } publi ...
- [LeetCode] Sliding Window Median 滑动窗口中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] Contiguous Array 邻近数组
Given a binary array, find the maximum length of a contiguous subarray with equal number of 0 and 1. ...
- BOM,Dom 回顾
加给元素: offsetLeft(距离定位父级的距离)/offsetTop(距离定位父级的距离)/offsetWidth(可视宽度)/offHeight(可视高度) clientLeft(左边框宽度) ...
- kafka知识体系-kafka设计和原理分析-消息传递语义
消息传递语义 消息传递保障 本节讨论Kafka如何确保消息在producer和consumer之间传输.有以下三种可能的传输保障(delivery guarantee): At most once: ...
- 顺序或者说优先级的重要性---解决dom生成问题有感
我们的大脑有逻辑,程序也有逻辑,只要一切都刚刚好,那么我们大脑的逻辑和程序的逻辑是没有冲突的:但是,有时候,我们想当然,只顾自己头脑中的逻辑,而随意臆想程序的逻辑,这个时候,就会有很多我们觉得不可思议 ...
- django 模板继承与重写
1.模板的继承一般用在别人给我们做好的HTML页面,当我们发现有很多的页面都具有相同的部分,这会我们应该考虑怎么能把他们相同的部分给提取出来,提取出来的部分我们作为一个单独的HTML文件叫做base. ...