原文链接:http://ghx0x0.github.io/2014/12/30/NDT-match/

目前三维配准中用的较多的是ICP迭代算法,需要提供一个较好的初值,同时由于算法本身缺陷,最终迭代结果可能会陷入局部最优。本文介绍的是另一种比较好的配准算法,NDT配准。这个配准算法耗时稳定,跟初值相关不大,初值误差大时,也能很好的纠正过来。

绪论:

  • 采样:

    • 3d点云数据在离相机近处点云密度大,远处密度小,所以在下采样时采用统一的采样方法还是会保留密度不均匀;
      一种方法是将空间划分格子,在每个格子内的点云随机取点,点数足够了即可。
    • 短波将会产生更高的分辨率和较少的镜面反射。采用多个深度相机会产生串扰的问题,尤其是镜面反射很厉害的时候。

可以采集图像深度的相机:

  1. 雷达radio
  2. 激光雷达lidar
    • 三角测量法
    • TOF飞行时间法
    • 相位差法
  3. 声呐
  4. 双目视觉
    • 双目视觉是一个被动的三角测量;
      缺点:
      A.双目视觉只有能被检测出来的特征点才能检测出深度,在低对比度的环境中,只有很少的特征点能够检测出;
      B.双目视觉的另一个缺点是岁两个相机之间的距离增大,深度精度减少,盲区增大,主要面向几米远的长距离测量。
      C.对于没有纹理的表面检测不出来。
  5. 投影光三角测量
  6. TOF深度相机
    • 实际上是采用相位偏移法测量;
      TOF深度相机相比lidar的TOF是 采集速度快,硬件便宜
      缺点是噪点很明显,并且需要标定,并且受外界光和本身主动光的影响。 而且曝光时间不容易确定

视图匹配(配准):

  1. ICP
    缺点:

     A.要剔除不合适的点对(点对距离过大、包含边界点的点对)
    B.基于点对的配准,并没有包含局部形状的信息
    C.每次迭代都要搜索最近点,计算代价高昂

    存在多种优化了的变体算法,如八叉树等

  2. IDC
     ICP的一种改进,采用极坐标代替笛卡尔坐标进行最近点搜索匹配
  3. PIC
     考虑了点云的噪音和初始位置的不确定性
  4. Point-based probabilistic registration
     需要首先建立深度图的三角面片
  5. NDT——正态分布变换:
     计算正态分布是一个一次性的工作(初始化),不需要消耗大量代价计算最近邻搜索匹配点
    概率密度函数在两幅图像采集之间的时间可以离线计算出来
  6. Gaussian fields
     和NDT正态分布变换类似,利用高斯混合模型考察点和点的距离和点周围表面的相似性
  7. Quadratic patches
  8. Likelihood-field matching——随机场匹配
  9. CRF匹配
     缺点: 运行速度慢,在3d中实时性能不好,误差大。
  10. Branch-and-bound registration
  11. Registration using local geometric features

NDT算法:

  1. 将空间(reference scan)划分成各个格子cell
  2. 将点云投票到各个格子
  3. 计算格子的正态分布PDF参数

  4. 将第二幅scan的每个点按转移矩阵T的变换

  5. 第二幅scan的点落于reference的哪个 格子,计算响应的概率分布函数

  6. 求所有点的最优值,目标函数为

PDF可以当做表面的近似表达,协方差矩阵的特征向量和特征值可以表达表面信息(朝向、平整度)
格子内少于3个点,经常会协方差矩阵不存在逆矩阵,所以只计算点数大于5的cell,涉及到下采样方法。
  • NDT的优化:
    格子参数最重要,太大导致精度不高,太小导致内存过高,并且只有两幅图像相差不大的情况才能匹配
  1. 固定尺寸
  2. 八叉树建立,格子有大有小
  3. 迭代,每次使用更精细的格子
  4. K聚类,有多少个类就有多少个cell,格子大小不一
  5. Linked-cell
  6. 三线插值 平滑相邻的格子cell导致的不连续,提高精度
    缺点:插值导致时间是普通的4倍
    优点:可以提高鲁棒性

ICP算法:

  1. 给定参考点集P和数据点集Q(在给定初始估计RT时)
  2. 对Q中的每一个点寻找P中的对应最近点,构成匹配点对
  3. 对匹配点对求欧氏距离和作为误差目标函数error
  4. 利用SVD分解求出R和T,使得error最小
  5. 将Q按照R和T旋转变化,并以此为基准回到1 重新寻找对应点对
NDT 耗时稳定,跟初值相关不大,初值误差大时,也能很好的纠正过来;
ICP耗时多,容易陷入局部最优; 可以根据格子cell的PDF的协方差矩阵计算特征向量特征值,每个格子有球形状、平面、线型三种类型,根据朝向作以统计,得到局部或者一幅图像的特征直方图

文章来自于Martin Magnusson的The Three-Dimensional Normal-Distributions Transform— an Efficient Representation for Registration,Surface Analysis, and Loop Detection。 作者详细介绍了NDT在各个条件下的配准效果及与其他配准方法的详细实验对比,并利用NDT算法配准矿洞内三维场景,同时完成SLAM任务。

NDT 算法和一些常见配准算法的更多相关文章

  1. NDT(Normal Distribution Transform) 算法(与ICP对比)和一些常见配准算法

    原文地址:http://ghx0x0.github.io/2014/12/30/NDT-match/ By GH 发表于 12月 30 2014 目前三维配准中用的较多的是ICP迭代算法,需要提供一个 ...

  2. NDT(Normal Distributions Transform)算法原理与公式推导

    正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...

  3. 3D点云配准算法简述

    ​蝶恋花·槛菊愁烟兰泣露 槛菊愁烟兰泣露,罗幕轻寒,燕子双飞去. 明月不谙离恨苦,斜光到晓穿朱户. 昨夜西风凋碧树,独上高楼,望尽天涯路. 欲寄彩笺兼尺素.山长水阔知何处? --晏殊 导读: 3D点云 ...

  4. 常见排序算法(附java代码)

    常见排序算法与java实现 一.选择排序(SelectSort) 基本原理:对于给定的一组记录,经过第一轮比较后得到最小的记录,然后将该记录与第一个记录的位置进行交换:接着对不包括第一个记录以外的其他 ...

  5. iOS面试中常见的算法题目

    一.前言 这里是在iOS求职中自己遇到的算法题,希望对大家有所帮助.不定期更新.如果大家想在线运行代码调试,可以将代码拷贝到这里.然后进行调试.下面就是常见的算法题目. 二.正文 1.就n的阶乘.(这 ...

  6. 常见hash算法的原理

    散列表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法.顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙. 散列表(Hash table,也叫 ...

  7. JS常见排序算法

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. JavaScript版几种常见排序算法

    今天发现一篇文章讲“JavaScript版几种常见排序算法”,看着不错,推荐一下原文:http://www.w3cfuns.com/blog-5456021-5404137.html 算法描述: * ...

  9. 常见排序算法(JS版)

    常见排序算法(JS版)包括: 内置排序,冒泡排序,选择排序,插入排序,希尔排序,快速排序(递归 & 堆栈),归并排序,堆排序,以及分析每种排序算法的执行时间. index.html <! ...

随机推荐

  1. 2019你该掌握的开源日志管理平台ELK STACK

    转载于https://www.vtlab.io/?p=217   在企业级开源日志管理平台ELK VS GRAYLOG一文中,我简单阐述了日志管理平台对技术人员的重要性,并把ELK Stack和Gra ...

  2. 微服务框架之微软Service Fabric

    常见的微服务架构用到的软件&组件: docker(成熟应用) spring boot % spring cloud(技术趋势) Service Fabric(属于后起之秀 背后是微软云的驱动) ...

  3. docker 基础 之安装

    一.安装 系统要求 Docker CE 支持 64 位版本 CentOS 7,并且要求内核版本不低于 3.10. CentOS 7 满足最低内核的要求,但由于内核版本比较低,部分功(如 overlay ...

  4. Pycharm搭建Django开发环境

    Pycharm搭建Django开发环境 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们大家都知道Django是python都一个web框架,因此大家需要自行安装python环境 ...

  5. Python package下载中遇到ReadTimeoutError: HTTPSConnectionPool?

    问题描述: Python package下载中遇到ReadTimeoutError: HTTPSConnectionPool? 问题解决: 方法1:继续重复下载 pip install virtual ...

  6. Hadoop记录-yarn ResourceManager Active频繁易主问题排查(转载)

    一.故障现象 两个节点的ResourceManger频繁在active和standby角色中切换.不断有active易主的告警发出 许多任务的状态没能成功更新,导致一些任务状态卡在NEW_SAVING ...

  7. 解决Failure to transfer org.apache.maven.plugins:maven-surefire-plugin:pom:2.17 问题

    详细报错如下 Failure to transfer org.apache.maven.plugins:maven-surefire-plugin:pom:2.17 from http://maven ...

  8. CNPM

    cnpm 代替 npm npm install -g cnpm --registry=https://registry.npm.taobao.org Reference 淘宝 NPM 镜像

  9. mysql使用navicat和mysqldump导出数据

    1.navicat 方式一:选中表,右键转储:(含有表结构和数据) 方式二:选择右上角工具,点击数据传输,在这个页面右侧选择数据库,左侧选择文件. 点击下一步,选择导出的表名和各种函数什么的,然后点击 ...

  10. 实惠VPS推荐

    1. Topmain 2. Virmach 3. BanwagonHost  [备用地址1] [备用地址2] 4. HiFormance  (跑路) 5. my.hosteons.com 6. . 以 ...