NDT 算法和一些常见配准算法
原文链接:http://ghx0x0.github.io/2014/12/30/NDT-match/
目前三维配准中用的较多的是ICP迭代算法,需要提供一个较好的初值,同时由于算法本身缺陷,最终迭代结果可能会陷入局部最优。本文介绍的是另一种比较好的配准算法,NDT配准。这个配准算法耗时稳定,跟初值相关不大,初值误差大时,也能很好的纠正过来。
绪论:
- 采样:
- 3d点云数据在离相机近处点云密度大,远处密度小,所以在下采样时采用统一的采样方法还是会保留密度不均匀;
一种方法是将空间划分格子,在每个格子内的点云随机取点,点数足够了即可。 - 短波将会产生更高的分辨率和较少的镜面反射。采用多个深度相机会产生串扰的问题,尤其是镜面反射很厉害的时候。
- 3d点云数据在离相机近处点云密度大,远处密度小,所以在下采样时采用统一的采样方法还是会保留密度不均匀;
可以采集图像深度的相机:
- 雷达radio
- 激光雷达lidar
- 三角测量法
- TOF飞行时间法
- 相位差法
- 声呐
- 双目视觉
- 双目视觉是一个被动的三角测量;
缺点:
A.双目视觉只有能被检测出来的特征点才能检测出深度,在低对比度的环境中,只有很少的特征点能够检测出;
B.双目视觉的另一个缺点是岁两个相机之间的距离增大,深度精度减少,盲区增大,主要面向几米远的长距离测量。
C.对于没有纹理的表面检测不出来。
- 双目视觉是一个被动的三角测量;
- 投影光三角测量
- TOF深度相机
- 实际上是采用相位偏移法测量;
TOF深度相机相比lidar的TOF是 采集速度快,硬件便宜
缺点是噪点很明显,并且需要标定,并且受外界光和本身主动光的影响。 而且曝光时间不容易确定
- 实际上是采用相位偏移法测量;
视图匹配(配准):
- ICP
缺点:A.要剔除不合适的点对(点对距离过大、包含边界点的点对)
B.基于点对的配准,并没有包含局部形状的信息
C.每次迭代都要搜索最近点,计算代价高昂
存在多种优化了的变体算法,如八叉树等
- IDC
ICP的一种改进,采用极坐标代替笛卡尔坐标进行最近点搜索匹配
- PIC
考虑了点云的噪音和初始位置的不确定性
- Point-based probabilistic registration
需要首先建立深度图的三角面片
- NDT——正态分布变换:
计算正态分布是一个一次性的工作(初始化),不需要消耗大量代价计算最近邻搜索匹配点
概率密度函数在两幅图像采集之间的时间可以离线计算出来
- Gaussian fields
和NDT正态分布变换类似,利用高斯混合模型考察点和点的距离和点周围表面的相似性
- Quadratic patches
- Likelihood-field matching——随机场匹配
- CRF匹配
缺点: 运行速度慢,在3d中实时性能不好,误差大。
- Branch-and-bound registration
- Registration using local geometric features
NDT算法:
- 将空间(reference scan)划分成各个格子cell
- 将点云投票到各个格子
计算格子的正态分布PDF参数
将第二幅scan的每个点按转移矩阵T的变换
第二幅scan的点落于reference的哪个 格子,计算响应的概率分布函数
求所有点的最优值,目标函数为
PDF可以当做表面的近似表达,协方差矩阵的特征向量和特征值可以表达表面信息(朝向、平整度)
格子内少于3个点,经常会协方差矩阵不存在逆矩阵,所以只计算点数大于5的cell,涉及到下采样方法。
- NDT的优化:
格子参数最重要,太大导致精度不高,太小导致内存过高,并且只有两幅图像相差不大的情况才能匹配
- 固定尺寸
- 八叉树建立,格子有大有小
- 迭代,每次使用更精细的格子
- K聚类,有多少个类就有多少个cell,格子大小不一
- Linked-cell
- 三线插值 平滑相邻的格子cell导致的不连续,提高精度
缺点:插值导致时间是普通的4倍
优点:可以提高鲁棒性
ICP算法:
- 给定参考点集P和数据点集Q(在给定初始估计RT时)
- 对Q中的每一个点寻找P中的对应最近点,构成匹配点对
- 对匹配点对求欧氏距离和作为误差目标函数error
- 利用SVD分解求出R和T,使得error最小
- 将Q按照R和T旋转变化,并以此为基准回到1 重新寻找对应点对
NDT 耗时稳定,跟初值相关不大,初值误差大时,也能很好的纠正过来;
ICP耗时多,容易陷入局部最优;
可以根据格子cell的PDF的协方差矩阵计算特征向量特征值,每个格子有球形状、平面、线型三种类型,根据朝向作以统计,得到局部或者一幅图像的特征直方图
文章来自于Martin Magnusson的The Three-Dimensional Normal-Distributions Transform— an Efficient Representation for Registration,Surface Analysis, and Loop Detection。 作者详细介绍了NDT在各个条件下的配准效果及与其他配准方法的详细实验对比,并利用NDT算法配准矿洞内三维场景,同时完成SLAM任务。
NDT 算法和一些常见配准算法的更多相关文章
- NDT(Normal Distribution Transform) 算法(与ICP对比)和一些常见配准算法
原文地址:http://ghx0x0.github.io/2014/12/30/NDT-match/ By GH 发表于 12月 30 2014 目前三维配准中用的较多的是ICP迭代算法,需要提供一个 ...
- NDT(Normal Distributions Transform)算法原理与公式推导
正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...
- 3D点云配准算法简述
蝶恋花·槛菊愁烟兰泣露 槛菊愁烟兰泣露,罗幕轻寒,燕子双飞去. 明月不谙离恨苦,斜光到晓穿朱户. 昨夜西风凋碧树,独上高楼,望尽天涯路. 欲寄彩笺兼尺素.山长水阔知何处? --晏殊 导读: 3D点云 ...
- 常见排序算法(附java代码)
常见排序算法与java实现 一.选择排序(SelectSort) 基本原理:对于给定的一组记录,经过第一轮比较后得到最小的记录,然后将该记录与第一个记录的位置进行交换:接着对不包括第一个记录以外的其他 ...
- iOS面试中常见的算法题目
一.前言 这里是在iOS求职中自己遇到的算法题,希望对大家有所帮助.不定期更新.如果大家想在线运行代码调试,可以将代码拷贝到这里.然后进行调试.下面就是常见的算法题目. 二.正文 1.就n的阶乘.(这 ...
- 常见hash算法的原理
散列表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法.顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙. 散列表(Hash table,也叫 ...
- JS常见排序算法
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- JavaScript版几种常见排序算法
今天发现一篇文章讲“JavaScript版几种常见排序算法”,看着不错,推荐一下原文:http://www.w3cfuns.com/blog-5456021-5404137.html 算法描述: * ...
- 常见排序算法(JS版)
常见排序算法(JS版)包括: 内置排序,冒泡排序,选择排序,插入排序,希尔排序,快速排序(递归 & 堆栈),归并排序,堆排序,以及分析每种排序算法的执行时间. index.html <! ...
随机推荐
- STM32F103 ------ 时钟配置
由于stm32的库默认是外部晶振8M的情况下实现的,所以配置波特率的时候也是按8M,包括主频,如果用12M晶振就需要改动几个地方: 在system_stm32f10x.c中找到相应类型的文件,进行如下 ...
- 9.Django Admin编写
##Admin功能添加 ##效果图 ##添加时间日期 添加新的字段后需要重新数据移值操作 修改models.py auto_now是自定设置日期为当前日期 修改日期:null=True
- window下域名解析系统DNS诊断命令nslookup详解
Ping指令我们很熟悉了,它是一个检查网络状况的命令,在输入的参数是域名的情况下会通过DNS进行查询,但只能查询A记录和CNAME(别名)记录,还会返回域名是否存在,其他的信息都是没有的.如果你需要对 ...
- 冒泡排序Java版
package dataStructureAlgorithmReview.day01; import java.util.Arrays; /** * 冒泡 * @author shundong * * ...
- 持续集成CI
一.CI 和 CD 持续集成是什么? 持续集成(Continuous integration,简称CI)指的是,频繁地(一天多次)将代码集成到主干.让产品可以快速迭代,同时还能保持高质量. 持续交付( ...
- 数据预处理:独热编码(One-Hot Encoding)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- JavaSE_坚持读源码_Class对象_Java1.7
Java程序在运行时,Java运行时系统一直对所有的对象进行所谓的运行时类型标识.这项信息纪录了每个对象所属的类.虚拟机通常使用运行时类型信息选准正确方法去执行,用来保存这些类型信息的类是Class类 ...
- kubernetes1.5.2 dashboard配置
镜像:https://hub.daocloud.io/#!/repos/f8919a2c-2540-424e-8758-d23cc76b6d80 启动Kubernetes集群 配置Kubernetes ...
- 数据库基础SQL知识面试题二
数据库基础SQL知识面试题二 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.选课系统SQL语法练习 course数据库中有以下四张表: •students表(学生表): si ...
- 《Apache Kafka 实战》读书笔记-认识Apache Kafka
<Apache Kafka 实战>读书笔记-认识Apache Kafka 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.kafka概要设计 kafka在设计初衷就是 ...