[TJOI2018]碱基序列
嘟嘟嘟
现在看到字符串就想到SAM,所以很担心kmp啥的会不会忘了……
这题感觉挺暴力的:首先当然要把\(s\)建成SAM,然后令\(dp[i][j]\)表示到第\(i\)组时,SAM上节点\(j\)能匹配的字符串个数。
转移的时候暴力枚举起点节点\(p\),然后每一次都把当前字符串放上去跑,如果在SAM上存在的话,令结束节点为\(x\),则有\(dp[i][x] += dp[i - 1][p]\)。
那么最后的答案就是\(\sum _ {i = 1} ^ {cnt} dp[m][i] * size[i]\)。
然后开一个临时数组就可以把dp降维了。
理论上\(O(|S| + ka_i |s|)\)的复杂度,实际上跑的飞快,挤到了loj rank3。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const ll mod = 1e9 + 7;
const int maxn = 1e4 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int m;
char s[maxn];
In ll inc(ll a, ll b) {return a + b >= mod ? a + b - mod : a + b;}
struct Sam
{
int las, cnt;
int tra[maxn << 1][26], len[maxn << 1], link[maxn << 1], siz[maxn << 1];
In void init() {link[las = cnt = 0] = -1;}
In void insert(int c)
{
int now = ++cnt, p = las;
len[now] = len[las] + 1, siz[now] = 1;
while(~p && !tra[p][c]) tra[p][c] = now, p = link[p];
if(p == -1) link[now] = 0;
else
{
int q = tra[p][c];
if(len[q] == len[p] + 1) link[now] = q;
else
{
int clo = ++cnt;
memcpy(tra[clo], tra[q], sizeof(tra[q]));
len[clo] = len[p] + 1;
link[clo] = link[q], link[q] = link[now] = clo;
while(~p && tra[p][c] == q) tra[p][c] = clo, p = link[p];
}
}
las = now;
}
char s[maxn];
In int tour(int p, char* s)
{
int len = strlen(s);
for(int i = 0, c; i < len; ++i)
if(tra[p][c = s[i] - 'A']) p = tra[p][c];
else return -1;
return p;
}
int dp[maxn << 1] = {1}, tp[maxn << 1];
In void solve()
{
fill(tp, tp + cnt + 1, 0);
int T = read();
while(T--)
{
scanf("%s", s);
for(int i = 0; i <= cnt; ++i)
if(dp[i])
{
int v = tour(i, s);
if(~v) tp[v] = inc(tp[v], dp[i]);
}
}
for(int i = 0; i <= cnt; ++i) dp[i] = tp[i];
}
int buc[maxn << 1], pos[maxn << 1];
In ll calc()
{
for(int i = 1; i <= cnt; ++i) ++buc[len[i]];
for(int i = 1; i <= cnt; ++i) buc[i] += buc[i - 1];
for(int i = 1; i <= cnt; ++i) pos[buc[len[i]]--] = i;
ll ret = 0;
for(int i = cnt; i; --i)
{
int now = pos[i], fa = link[now];
siz[fa] += siz[now];
ret = inc(ret, 1LL * dp[now] * siz[now] % mod);
}
return ret;
}
}S;
int main()
{
m = read(); scanf("%s", s);
int len = strlen(s); S.init();
for(int i = 0; i < len; ++i) S.insert(s[i] - 'A');
for(int i = 1; i <= m; ++i) S.solve();
write(S.calc());
return 0;
}
[TJOI2018]碱基序列的更多相关文章
- 洛谷P4591 [TJOI2018]碱基序列(hash dp)
题意 题目链接 Sol \(f[i][j]\)表示匹配到第\(i\)个串,当前在主串的第\(j\)个位置 转移的时候判断一下是否可行就行了.随便一个能搞字符串匹配的算法都能过 复杂度\(O(|S| K ...
- BZOJ5337 [TJOI2018] 碱基序列 【哈希】【动态规划】
题目分析: 这道题的难点在于要取模,而题面没有写. 容易想到一个O(1E7)的dp.KMP或者哈希得到相关位置然后对于相关位置判断上一个位置有多少种情况. 代码: #include<bits/s ...
- 洛谷P4591 [TJOI2018]碱基序列 【KMP + dp】
题目链接 洛谷P4591 题解 设\(f[i][j]\)表示前\(i\)个串匹配到位置\(j\)的方案数,匹配一下第\(i\)个串进行转移即可 本来写了\(hash\),发现没过,又写了一个\(KMP ...
- 【[TJOI2018]碱基序列】
题目 为什么没人用\(SAM\)啊 我们先把原来的模式串建一遍\(SAM\),之后我们就可以求出\(SAM\)上每一个节点的\(|endpos|\)就可以知道每一个子串出现的次数了,也就是在模式串上的 ...
- 「学习笔记」字符串基础:Hash,KMP与Trie
「学习笔记」字符串基础:Hash,KMP与Trie 点击查看目录 目录 「学习笔记」字符串基础:Hash,KMP与Trie Hash 算法 代码 KMP 算法 前置知识:\(\text{Border} ...
- bzoj 5338: [TJOI2018]xor (树链剖分+可持久化01Trie)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5338 题面: 5338: [TJOI2018]xor Time Limit: 30 Sec ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
- 洛谷P4590 [TJOI2018]游园会(状压dp LCS)
题意 题目链接 Sol 这个题可能是TJOI2018唯一的非模板题了吧.. 考虑LCS的转移方程, \[f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1] ...
- 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
[BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...
随机推荐
- 去除input[type=number]的默认样式
input[type=number] { -moz-appearance: textfield; } input[type=number]::-webkit-inner-spin-button, in ...
- angular input 为file on-change 无效
l转自:https://blog.csdn.net/klo220/article/details/53331229 侵删 出现这个问题是因为input的type是file,这时如果用ng-change ...
- elementUI vue 页面加载的时候页面出现了黑字 页面优化处理 按钮弹出框文字
elementUI 页面如果需要加载很多东西的时候, 自己定义的按钮或者弹出框dialog的文字就会显示在页面上, 一闪而过, 因此需要优化一下, elementUI 提供的loading有遮罩层, ...
- 2017-11-07 中文代码示例之Angular入门教程尝试
"中文编程"知乎专栏原址 原文: 中文代码示例教程之Angular尝试 为了检验中文命名在Angular中的支持程度, 把Angular官方入门教程的示例代码中尽量使用了中文命名. ...
- 系统调用syscall---用户态切换到内核态的唯一途径
1.应用程序有时需要内核协助完成一些处理,但是应用程序不可能执行内核代码(主要是安全性考虑), 那么,应用程序需要有一种机制告诉内核,它现在需要内核的帮助,这个机制就是系统调用. 2.系统调用的本质是 ...
- ScrollView嵌套ListView、GridView,进入页面显示的位置并不是在最顶部,而是在中间部分问题
在Android项目的开发中,经常会遇到一些布局,可能需要在ScrollView中嵌套ListView或.GridView来实现, 是在使用的过程总又遇到了一个新的问题,就是如果在ScrollView ...
- MongoDB 安装与配置
MongoDB下载 官方下载链接:https://www.mongodb.com/download-center/community MongoDB安装 简单,按提示安装即可.安装方式: 1. Com ...
- TTS 文字转语音 ekho
1.源码下载 使用svn客户端,执行如下命令下载 svn co https://svn.code.sf.net/p/e-guidedog/code/ 2.官方网站查看说明 http://www.egu ...
- 基于cifar10实现卷积神经网络图像识别
import tensorflow as tf import numpy as np import math import time import cifar10 import cifar10_inp ...
- x3D 下载以及如何使用原版NetBeans IDE 来搭建x3d编辑环境
安装前: Overview X3D-Edit version 3.3 standalone application and Netbeans plugin are available and read ...