嘟嘟嘟




现在看到字符串就想到SAM,所以很担心kmp啥的会不会忘了……




这题感觉挺暴力的:首先当然要把\(s\)建成SAM,然后令\(dp[i][j]\)表示到第\(i\)组时,SAM上节点\(j\)能匹配的字符串个数。

转移的时候暴力枚举起点节点\(p\),然后每一次都把当前字符串放上去跑,如果在SAM上存在的话,令结束节点为\(x\),则有\(dp[i][x] += dp[i - 1][p]\)。

那么最后的答案就是\(\sum _ {i = 1} ^ {cnt} dp[m][i] * size[i]\)。

然后开一个临时数组就可以把dp降维了。

理论上\(O(|S| + ka_i |s|)\)的复杂度,实际上跑的飞快,挤到了loj rank3。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const ll mod = 1e9 + 7;
const int maxn = 1e4 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int m;
char s[maxn]; In ll inc(ll a, ll b) {return a + b >= mod ? a + b - mod : a + b;} struct Sam
{
int las, cnt;
int tra[maxn << 1][26], len[maxn << 1], link[maxn << 1], siz[maxn << 1];
In void init() {link[las = cnt = 0] = -1;}
In void insert(int c)
{
int now = ++cnt, p = las;
len[now] = len[las] + 1, siz[now] = 1;
while(~p && !tra[p][c]) tra[p][c] = now, p = link[p];
if(p == -1) link[now] = 0;
else
{
int q = tra[p][c];
if(len[q] == len[p] + 1) link[now] = q;
else
{
int clo = ++cnt;
memcpy(tra[clo], tra[q], sizeof(tra[q]));
len[clo] = len[p] + 1;
link[clo] = link[q], link[q] = link[now] = clo;
while(~p && tra[p][c] == q) tra[p][c] = clo, p = link[p];
}
}
las = now;
}
char s[maxn];
In int tour(int p, char* s)
{
int len = strlen(s);
for(int i = 0, c; i < len; ++i)
if(tra[p][c = s[i] - 'A']) p = tra[p][c];
else return -1;
return p;
}
int dp[maxn << 1] = {1}, tp[maxn << 1];
In void solve()
{
fill(tp, tp + cnt + 1, 0);
int T = read();
while(T--)
{
scanf("%s", s);
for(int i = 0; i <= cnt; ++i)
if(dp[i])
{
int v = tour(i, s);
if(~v) tp[v] = inc(tp[v], dp[i]);
}
}
for(int i = 0; i <= cnt; ++i) dp[i] = tp[i];
}
int buc[maxn << 1], pos[maxn << 1];
In ll calc()
{
for(int i = 1; i <= cnt; ++i) ++buc[len[i]];
for(int i = 1; i <= cnt; ++i) buc[i] += buc[i - 1];
for(int i = 1; i <= cnt; ++i) pos[buc[len[i]]--] = i;
ll ret = 0;
for(int i = cnt; i; --i)
{
int now = pos[i], fa = link[now];
siz[fa] += siz[now];
ret = inc(ret, 1LL * dp[now] * siz[now] % mod);
}
return ret;
}
}S; int main()
{
m = read(); scanf("%s", s);
int len = strlen(s); S.init();
for(int i = 0; i < len; ++i) S.insert(s[i] - 'A');
for(int i = 1; i <= m; ++i) S.solve();
write(S.calc());
return 0;
}

[TJOI2018]碱基序列的更多相关文章

  1. 洛谷P4591 [TJOI2018]碱基序列(hash dp)

    题意 题目链接 Sol \(f[i][j]\)表示匹配到第\(i\)个串,当前在主串的第\(j\)个位置 转移的时候判断一下是否可行就行了.随便一个能搞字符串匹配的算法都能过 复杂度\(O(|S| K ...

  2. BZOJ5337 [TJOI2018] 碱基序列 【哈希】【动态规划】

    题目分析: 这道题的难点在于要取模,而题面没有写. 容易想到一个O(1E7)的dp.KMP或者哈希得到相关位置然后对于相关位置判断上一个位置有多少种情况. 代码: #include<bits/s ...

  3. 洛谷P4591 [TJOI2018]碱基序列 【KMP + dp】

    题目链接 洛谷P4591 题解 设\(f[i][j]\)表示前\(i\)个串匹配到位置\(j\)的方案数,匹配一下第\(i\)个串进行转移即可 本来写了\(hash\),发现没过,又写了一个\(KMP ...

  4. 【[TJOI2018]碱基序列】

    题目 为什么没人用\(SAM\)啊 我们先把原来的模式串建一遍\(SAM\),之后我们就可以求出\(SAM\)上每一个节点的\(|endpos|\)就可以知道每一个子串出现的次数了,也就是在模式串上的 ...

  5. 「学习笔记」字符串基础:Hash,KMP与Trie

    「学习笔记」字符串基础:Hash,KMP与Trie 点击查看目录 目录 「学习笔记」字符串基础:Hash,KMP与Trie Hash 算法 代码 KMP 算法 前置知识:\(\text{Border} ...

  6. bzoj 5338: [TJOI2018]xor (树链剖分+可持久化01Trie)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5338 题面: 5338: [TJOI2018]xor Time Limit: 30 Sec  ...

  7. [模板] dp套dp && bzoj5336: [TJOI2018]party

    Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...

  8. 洛谷P4590 [TJOI2018]游园会(状压dp LCS)

    题意 题目链接 Sol 这个题可能是TJOI2018唯一的非模板题了吧.. 考虑LCS的转移方程, \[f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1] ...

  9. 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)

    [BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...

随机推荐

  1. JavaSE-基础语法(三)-面向对象

    面向对象 8.类9.对象10.封装11.继承12.多态13.构造器14.super15.this16.接口17.抽象类18.权限修饰符19.内部类

  2. Hibernate(十三)迫切内连接fetch

    迫切内连接fetch 内连接和迫切内连接的区别: 其主要区别就在于封装数据,因为他们查询的结果集都是一样的,生成底层的SQL语句也是一样的. 1.内连接:发送就是内连接的语句,封装的时候将属于各自对象 ...

  3. Java基础IO流(二)字节流小案例

    JAVA基础IO流(一)https://www.cnblogs.com/deepSleeping/p/9693601.html ①读取指定文件内容,按照16进制输出到控制台 其中,Integer.to ...

  4. Node.js性能分析神器Easy-Monitor

    摘要: 使用Easy-Monitor,可以准确定位Node.js应用的性能瓶颈,帮助我们优化代码性能. 当应用出现性能问题时,最大的问题在于:如何准确定位造成性能瓶颈的代码呢?对于Node.js开发者 ...

  5. JS apply的巧妙用法以及扩展到Object.defineProperty的使用

    Math.max 实现得到数组中最大的一项 var array = [1,2,3,4,5]; var max = Math.max.apply(null, array); console.log(ma ...

  6. Android为TV端助力 fragment 的用法以及与activity的交互和保存数据的方法,包括屏幕切换(转载)!

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/37992017 1.管理Fragment回退栈 类似与Android系统为Acti ...

  7. [转] Vue生命周期

    Vue生命周期 这是Vue文档里关于实例生命周期的解释图 那么下面我们来进行测试一下 <section id="app-8"> {{data}} </sectio ...

  8. Symantec Backup Exec 2010 安装报 bad ELF interpreter: No such file or directory

    在64位的Red Hat Enterprise Linux Server release 6.6上安装Symantec Backup Exec 2010时, 遇到下面错误: # ./installra ...

  9. MyBatis笔记----报错Exception in thread "main" org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.ij34.model.UserMapper.selectUser

    信息: Refreshing org.springframework.context.support.ClassPathXmlApplicationContext@41cf53f9: startup ...

  10. mssql sqlserver for xml EXPLICIT 用法详解说明

    摘要:下文通过举例的方式,详细说明"for xml EXPLICIT"关键字的用法,如下所示:实验环境:sql server 2008 R2 EXPLICIT的功能:将数据表采用特 ...