LeetCode(119):杨辉三角 II
Easy!
题目描述:
给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。

在杨辉三角中,每个数是它左上方和右上方的数的和。
示例:
输入: 3
输出: [1,3,3,1]
进阶:
你可以优化你的算法到 O(k) 空间复杂度吗?
解题思路:
杨辉三角想必大家并不陌生,应该最早出现在初高中的数学中,其实就是二项式系数的一种写法。
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
杨辉三角形第n层(顶层称第0层,第1行,第n层即第n+1行,此处n为包含0在内的自然数)正好对应于二项式
展开的系数。例如第二层1 2 1是幂指数为2的二项式
展开形式
的系数。
杨辉三角主要有下列五条性质:
- 杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1。
- 第
行的数字个数为
个。 - 第
行的第
个数字为组合数
。 - 第
行数字和为
。 - 除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也就是说,第
行第
个数字等于第
行的第
个数字与第
个数字的和)。这是因为有组合恒等式:
。可用此性质写出整个杨辉三角形。
由于题目有额外限制条件,程序只能使用O(k)的额外空间,那么这样就不能把每行都算出来,而是要用其他的方法,。最先考虑用的是第三条性质,算出每个组合数来生成第n行系数,代码如下:
C++ 解法一:
/**
* NOT Correct!
*/
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> out;
if (rowIndex < ) return out; for (int i = ; i <= rowIndex; ++i) {
if ( i == || i == rowIndex)
out.push_back();
else
out.push_back (computeCnk(rowIndex, i));
}
return out;
} int computeCnk(int n, int k) {
if (k > n) return ;
else if (k > n/) k = n - k;
int numerator = , denomator = ;
for (int i = ; i < k; ++i) {
numerator *= n - i;
denomator *= k - i;
}
if (denomator != ) return numerator/denomator;
else return ;
}
};
本地调试输出前十行,没啥问题,拿到OJ上测试,程序在第18行跪了,中间有个系数不正确。那么问题出在哪了呢,仔细找找,原来出在计算组合数那里,由于算组合数时需要算连乘,而整形数int的数值范围只有-32768到32768之间,那么一旦n值过大,连乘肯定无法计算。而丧心病狂的OJ肯定会测试到成百上千行,所以这个方法不行。那么我们再来考虑利用第五条性质,除了第一个和最后一个数字之外,其他的数字都是上一行左右两个值之和。那么我们只需要两个for循环,除了第一个数为1之外,后面的数都是上一次循环的数值加上它前面位置的数值之和,不停地更新每一个位置的值,便可以得到第n行的数字。
C++ 解法二:
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> out;
if (rowIndex < ) return out;
out.assign(rowIndex + , );
for (int i = ; i <= rowIndex; ++i) {
if ( i == ) {
out[] = ;
continue;
}
for (int j = rowIndex; j >= ; --j) {
out[j] = out[j] + out[j-];
}
}
return out;
}
};
LeetCode(119):杨辉三角 II的更多相关文章
- Java实现 LeetCode 119 杨辉三角 II
119. 杨辉三角 II 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: ...
- LeetCode(119. 杨辉三角 II)
问题描述 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: 你可以优化你的 ...
- 【LeetCode】119. 杨辉三角 II Pascal‘s Triangle II(Python & Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 方法一: 空间复杂度 O ( k ∗ ( k + 1 ...
- 119.杨辉三角II
这道题和第118题是一样的,需要注意这道题目对行数的要求 # 定义一个列表,用来存放数据 num_list = [] for index1 in ran ...
- 力扣119. 杨辉三角 II
原题 1 class Solution: 2 def getRow(self, rowIndex: int) -> List[int]: 3 ans = [1] 4 for i in range ...
- LeetCode119.杨辉三角 II
119.杨辉三角 II 描述 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例 输入: 3 输出: [1,3,3,1] 进阶 ...
- LeetCode:杨辉三角【118】
LeetCode:杨辉三角[118] 题目描述 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 5 输出: ...
- [LeetCode] 119. Pascal's Triangle II 杨辉三角 II
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...
- LeetCode 118:杨辉三角 II Pascal's Triangle II
公众号:爱写bug(ID:icodebugs) 作者:爱写bug 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. Given a non-negative index k whe ...
随机推荐
- SFTP免密码登录原理
概述 Public Key认证的主要魅力在于认证时承诺不必提供密码就能够同远程系统建立连接. Public Key认证的基础在于一对密钥,public key和private key,public k ...
- Ant 与jemter的结合--批量执行jmeter脚本
一.Ant 介绍&作用: Apache Ant,是一个将软件编译.测试.部署等步骤联系在一起加以自动化的一个工具,大多用于Java环境中的软件开发. 作用:打包,部署,运行Java工程 二.下 ...
- Caused by: java.lang.NoSuchMethodError: javax.servlet.ServletContext.getClassLoader()Ljava/lang/ClassLoader;
运行tomat 报错: Caused by: java.lang.NoSuchMethodError: javax.servlet.ServletContext.getClassLoader()Lj ...
- 课程8:《Maven精品教程视频》--视频目录
2017年3月18日 老师讲的课程 \day01视频\01maven依赖管理.avi; \day01视频\02maven项目构建.avi; \day01视频\03maven程序安装.avi; \day ...
- Servlet 线程安全
普通类的静态属性,当被多个线程访问时,就有线程安全问题: Servlet 也一样 当多个客户端并发访问同一个Servlet时,web服务器会为每一个客户端的访问请求创建一个线程,并在这个线程上调用Se ...
- Spring重温(一)--Spring快速入门
1.spring官网(https://repo.spring.io)下载依赖jar. 2.配置spring环境时还需要commons-logging相关jar. 3.打开eclise创建一个工程,并将 ...
- linux中的shell编程----基础
1,运行shell脚本有两种办法一般有两种: 先给可执行权限,再进入文件所在的目录,输入:./name.sh: 运行解释器再执行脚本:/bin/sh name.sh,这种情况下,脚本中可以没有#!/b ...
- kali linux 安装virtualbox报错(rc=-1908)
解决步骤: apt-get install dkms # 如何安装了dkms就跳过这步 apt-get install linux-headers-`uname -r` # 这个符号是TAB上方的符号 ...
- 一言难尽的js变量提升
基础知识 在这个课题开始之前我们先做一些基础知识的讲解 1.在顶级的区域内声明的变量为 window级别的变量. 也就是说var a=100 等价于 window.a=100; 2.局部的重新声明变 ...
- [Docker]CentOS7下Docker安装教程
想要倒腾Kubernetes的话,第一步就是要会安装Docker,这篇文章讲一讲过程 安装步骤 检查内核版本,必须是3.10以上 uname -r 安装Docker yum -y install do ...