%RF:RF实现根据乳腺肿瘤特征向量高精度(better)预测肿瘤的是恶性还是良性

load data.mat

a = randperm(569);
Train = data(a(1:500),:);
Test = data(a(501:end),:); P_train = Train(:,3:end);
T_train = Train(:,2); P_test = Test(:,3:end);
T_test = Test(:,2); model = classRF_train(P_train,T_train); [T_sim,votes] = classRF_predict(P_test,model); count_B = length(find(T_train == 1));
count_M = length(find(T_train == 2));
total_B = length(find(data(:,2) == 1));
total_M = length(find(data(:,2) == 2));
number_B = length(find(T_test == 1));
number_M = length(find(T_test == 2));
number_B_sim = length(find(T_sim == 1 & T_test == 1));
number_M_sim = length(find(T_sim == 2 & T_test == 2));
disp(['病例总数:' num2str(569)...
' 良性:' num2str(total_B)...
' 恶性:' num2str(total_M)]);
disp(['训练集病例总数:' num2str(500)...
' 良性:' num2str(count_B)...
' 恶性:' num2str(count_M)]);
disp(['测试集病例总数:' num2str(69)...
' 良性:' num2str(number_B)...
' 恶性:' num2str(number_M)]);
disp(['良性乳腺肿瘤确诊:' num2str(number_B_sim)...
' 误诊:' num2str(number_B - number_B_sim)...
' 确诊率p1=' num2str(number_B_sim/number_B*100) '%']);
disp(['恶性乳腺肿瘤确诊:' num2str(number_M_sim)...
' 误诊:' num2str(number_M - number_M_sim)...
' 确诊率p2=' num2str(number_M_sim/number_M*100) '%']); figure index = find(T_sim ~= T_test);
plot(votes(index,1),votes(index,2),'r*')
hold on index = find(T_sim == T_test);
plot(votes(index,1),votes(index,2),'bo')
hold on legend('红色*是错误分类样本','蓝色空心圆是正确分类样本') plot(0:500,500:-1:0,'r-.')
hold on plot(0:500,0:500,'r-.')
hold on line([100 400 400 100 100],[100 100 400 400 100]) xlabel('输出为类别1的决策树棵数')
ylabel('输出为类别2的决策树棵数')
title('随机森林分类器性能分析—Jason niu') Accuracy = zeros(1,20);
for i = 50:50:1000
i
accuracy = zeros(1,100);
for k = 1:100
model = classRF_train(P_train,T_train,i);
T_sim = classRF_predict(P_test,model);
accuracy(k) = length(find(T_sim == T_test)) / length(T_test);
end
Accuracy(i/50) = mean(accuracy);
end figure
plot(50:50:1000,Accuracy)
xlabel('随机森林中决策树棵数')
ylabel('分类正确率')
title('随机森林中决策树棵数对性能的影响—Jason niu')

  

RF:RF实现根据乳腺肿瘤特征向量高精度(better)预测肿瘤的是恶性还是良性—Jason niu的更多相关文章

  1. DT:DT实现根据乳腺肿瘤特征向量高精度预测肿瘤的是恶性还是良性—Jason niu

    %DT:DT实现根据乳腺肿瘤特征向量高精度预测肿瘤的是恶性还是良性 load data.mat a = randperm(569); Train = data(a(1:500),:); Test = ...

  2. SVM:SVM之Classification根据已有大量数据集案例,输入已有病例的特征向量实现乳腺癌诊断高准确率预测—Jason niu

    load BreastTissue_data.mat n = randperm(size(matrix,1)); train_matrix = matrix(n(1:80),:); train_lab ...

  3. TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  4. 入门系列之Scikit-learn在Python中构建机器学习分类器

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由信姜缘 发表于云+社区专栏 介绍 机器学习是计算机科学.人工智能和统计学的研究领域.机器学习的重点是训练算法以学习模式并根据数据进行预 ...

  5. 回归(regression)与分类(classification)的区别

    术语监督学习,意指给出一个算法,需要部分数据集已经有正确的答案. " 分类和回归的区别在于输出变量的类型. 定量输出称为回归,或者说是连续变量预测:定性输出称为分类,或者说是离散变量预测. ...

  6. Nat Nanotechnol | 朱涛/陈春英等合作发现碳纳米管呼吸暴露后的延迟毒性导致小鼠原位乳腺肿瘤的多发性广泛转移

    碳纳米管(Carbon nanotube, CNT)是重要的一维纳米材料,由于其良好的力学.电学和化学性能,可用作超强纤维.隐身材料.大功率超级电容器.传感器等,在纳米材料.信息.光电.能源.传感及生 ...

  7. RF用例执行方法

    用例如下图: 1.执行整个项目下的所有用例 dos命令下输入robot D:\work_doc\RF (RF为下图中脚本项目Test目录的上级目录) 2.执行某个suite中的所有用例 dos命令下输 ...

  8. robot framework 笔记(三),RF安装

    背景: 本来robot framework的安装应该放在一开始写的,因写博客的时候已经装过了,恰巧重装系统又重装了一遍RF RF推荐使用python2, 使用3的话会遇到一些页面非友好的问题 需要的安 ...

  9. TCGA各种肿瘤数据的20多种不同玩法/挖掘方法

    肿瘤基因组图谱 (The Cancer Genome Atlas,TCGA) 计划是由美国国家癌症研究院(National Cancer Institute,NCI)和美国国家人类基因组研究所(Nat ...

随机推荐

  1. java基础题刷题中的知识点复习

    将变量转换为字符串方法:(String)待转对象..toString().String.valueOf(待转对象) 对字符串进行操作的方法,使用StringBuffer和StringBuilder定义 ...

  2. Confluence 6 查看系统属性

    当你添加了内存,设置了代理(proxy)或者修改了 Java 的选项,通常比较难判断系统是否已经按照你的修改进行了配置和启动.这个页面将会帮助你查看 Confluence 站点运行使用的系统属性. 你 ...

  3. Confluence 6 从生产环境中恢复一个测试实例

    请参考 Restoring a Test Instance from Production 页面中的内容获得更多完整的说明. 很多 Confluence 的管理员将会使用生产实例运行完整数据和服务的 ...

  4. Confluence 6 生产环境备份策略

    如果你是下面的情况,Confluence 的自动每日 XML 备份可能适合你: 正在评估使用 Confluence 你对数据库的管理并不是非常熟悉同时你的 Confluence 安装实例的数据量并不大 ...

  5. Confluence 6 编辑一个站点装饰文件

    希望编辑一个站点的 decorator 文件: 进入  > 基本配置(General Configuration) > 布局(Layouts )(在Look and Feel 菜单下面) ...

  6. linux之ab压力测试工具

    等待... https://www.cnblogs.com/myvic/p/7703973.html

  7. python用unittest+HTMLTestRunner的框架测试并生成测试报告

    直接贴代码: import unittestfrom selenium import webdriverfrom time import sleepimport osimport time # 定义打 ...

  8. 常用的Eclipse 快捷键

    显示所有快捷方式 SHIFT + CTRL + L 代码类 ALT + / 代码补全 ALT + 1 批量修改变量名 SHIFT + CTRL + F 自动格式代码4 SHIFT + ALT + R ...

  9. kali访问宿主机Web页面解决方案

    1.首先安装好PHPDVWA测试平台,将等级设置成low,kali中自带了python2.7.为了不再宿主机中修改python3.6,所以要利用kali来模访问宿主机中的Web页面.如果不进行配置修改 ...

  10. 不显示TensorFlow加速指令警告

    vim ~/.bashrc 在打开的文件中追加: export TF_CPP_MIN_LOG_LEVEL= 最后再执行 source ~/.bashrc