HNOI2017 抛硬币 (FakeBeng)
除了队长快跑外最难的题吧。
除了需要写\(exLucas\)之外,还教会了我大量的卡常技巧。
首先\(70\)分就是个直接按题意模拟,易得\(ans=\sum_{j=0}^{b} C_{b}^{j}\sum_{i=j+1}^{a}C_{a}^{i}\),把后面的求和用后缀和优化一下,外加\(exLucas\)和大力卡常应该可以拿到这档分。
考虑满分做法,首先对于\(a=b\)的,显然每一种胜利局面取反后一定是一种失败局面,当然还有平局。
我们考虑用总情况减去平局除以二。
如何计算平局,显然有\(sum=\sum_{i=0}^{a}C_{a}^{i}*C_{b}^{i}\),因为\(a=b\),所以这式子等于\(C_{2a}^{a}\),证明很显然。
所以当\(a=b\)时,\(ans=\frac{2^{a+b}-C_{2a}^{a}}{2}\)。
现在考虑\(a>b\)的情况,显然每个失败状态和平局取反后一定是必胜的,但是有些胜利状态取反后还是胜利的。我们考虑计算这一部分。
我们假设小\(A\)抛了\(W_A\)次正面,小\(B\)抛了\(W_B\)次正面,那么在该情况下有\(W_A>W_B\),那么\(a-W_A>b-W_B\),得\(a-b>W_A-W_b>0\),枚举\(W_A-W_B\),有\(\sum_{i=1}^{a-b-1}\sum_{j=0}^{b}C_{b}^{j}C_{a}^{i+j}\),转换一下得\(\sum_{i=1}^{a-b-1}\sum_{j=0}^{b}C_{b}^{b-j}C_{a}^{i+j}\) ,因为\(b-j+i+j=b+i\),所以\(\sum_{i=1}^{a-b-1}C_{a+b}^{b+i}\),然后就可以算了。\(ans=\frac{2^{a+b}+\sum_{i=1}^{a-b-1}C_{a+b}^{b+i}}{2}\) 。然后你就可以算了,还有个卡常,就是这个组合数是对称的,我们可以只算一半。
HNOI2017 抛硬币 (FakeBeng)的更多相关文章
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
- bzoj 4830: [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...
- [AH/HNOI2017]抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- bzoj4830 hnoi2017 抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
- 【刷题】BZOJ 4830 [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- [HNOI2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于××师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- [luogu3726 HNOI2017] 抛硬币 (拓展lucas)
传送门 数学真的太优秀了Orz 数据真的太优秀了Orz 题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月, ...
随机推荐
- D1. Great Vova Wall (Version 1)
链接 [https://codeforces.com/contest/1092/problem/D1] 题意 给你n个位置墙的高度,现在你有2×1 砖块,你可以竖直或者水平放置 问你是否可以使得所有位 ...
- C++ string中的find()函数
1.string中find()返回值是字母在母串中的位置(下标记录),如果没有找到,那么会返回一个特别的标记npos.(返回值可以看成是一个int型的数) #include<cstring> ...
- no-sql数据库之redis
一.FAQ 1.如果用连接器连接redis不成功,报如下错误: crash-report-server replied:Request Entity Too Large 则可以先通过cmd命令查看端口 ...
- 【kindle笔记】之 《鬼吹灯》-9-20
[kindle笔记]读书记录-总 9-20 日常吐槽 连着几天,基本是一口气读完了鬼吹灯. 想来,也算是阴差阳错了.本来是想看盗墓的,读了几页开头,心想坏了,拷贝错了,这是鬼吹灯-- 讲真的,每每读小 ...
- centos7 network eno16777736
Network service not running - eno16777736 not activated - CentOShttps://www.centos.org/forums/viewto ...
- Windows 10正式版历代记:Version 和 Build 对应关系
2017年10月中下旬,微软面向正式版用户推送了Windows 10创意者更新秋季版.这是自发布以来,Windows 10的第五个大版本. 在这篇文章中,我们来回顾一下Windows 10正式版的历史 ...
- Notepad++快捷使用
用Notepad++写代码,要是有一些重复的代码想copy一下有木有简单的方法呢,确实还是有的不过也不算太好用.主要是应用键盘上的 Home 键 和 End 键.鼠标光标停留在一行的某处,按 Home ...
- jmeter高并发设计方案(转)
高并发设计方案二(秒杀架构) 优化方向: (1)将请求尽量拦截在系统上游(不要让锁冲突落到数据库上去).传统秒杀系统之所以挂,请求都压倒了后端数据层,数据读写锁冲突严重,并发高响应慢,几乎所有请求都超 ...
- web安全测试排查
漏洞排查思路: 1.上传漏洞 如果看到:选择你要上传的文件 [重新上传]或者出现“请登陆后使用”,80%就有漏洞了! 有时上传不一定会成功,这是因为Cookies不一样.我们就要用WSockExper ...
- Errors running builder 'DeploymentBuilder' on project
Errors running builder 'DeploymentBuilder' on project 1.修改java源代码后点击保存,IDE 自动编译并热部署,提示如下错误: Errors o ...