【CF908G】New Year and Original Order(动态规划)

题面

洛谷

CF

题解

设\(f[i][j][k][0/1]\)表示当前填到了第\(i\)位,有\(j\)个大于等于\(k\)的数,是否卡到上界的方案数。

这个东西算完之后,等价于默认排好序了。

看起来可以枚举每个数字出现在第几位了。

然而实际上不知道这个数字的出现次数,所以不能按照\(10^j*k\)这样子计算贡献。

怎么办呢,假设前面有\(j\)个数大于\(k\)的数,那么就产生\(\sum_{i=0}^{j-1}10^i\)的贡献。

把样例蒯下来手玩一下就知道为啥是对的了。

\(3459\):\(\ge 3\)的有\(4\)个,\(\ge 4\)的有\(3\)个,\(\ge 5\)的有\(2\)个,\(\ge 6..8\)的有\(2\)个,\(\ge 9\)的有\(1\)个。

所以贡献就是\(1111*3+111*4+11*1+11*3+1*9=3456\)。

本质上是考虑把\(k*10^i\)拆成\(k\)个\(10^i\)的和的形式。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,ans;char s[705];
int f[705][705][10][2];
int main()
{
scanf("%s",s+1);n=strlen(s+1);
for(int i=0;i<=9;++i)f[0][0][i][0]=1;
for(int i=1;i<=n;++i)
for(int j=0;j<=i;++j)
for(int k=0;k<=9;++k)
for(int l=0;l<=1;++l)
for(int p=0,lim=l?9:s[i]-48;p<=lim;++p)
add(f[i][j+(k<=p)][k][l|(p<lim)],f[i-1][j][k][l]);
for(int k=1;k<=9;++k)
for(int j=1,v=1;j<=n;++j,v=(10ll*v+1)%MOD)
add(ans,1ll*v*(f[n][j][k][0]+f[n][j][k][1])%MOD);
printf("%d\n",ans);return 0;
}

【CF908G】New Year and Original Order(动态规划)的更多相关文章

  1. CF908G New Year and Original Order 数位DP

    传送门 看到数据范围到\(10^{700}\)毫无疑问数位DP.那么我们最重要的问题是如何有效地维护所有数位排序之后的数的值. 对于某一个数\(x\),设\(f_{x,i} (i \in [1,9]) ...

  2. CF908G New Year and Original Order

    题面 题意翻译 给定$n<=10^{700}$,问$1$到$n$中每个数在各数位排序后得到的数的和.答案$mod\;10^9+7$. 题解 考虑设$f[i][j][k][0/1]$表示前$i$位 ...

  3. CF908G New Year and Original Order(DP,数位 DP)

    又一次降智…… (数位 DP 原来可以写这么短,学到了) 问题可以转化为求数位中 $\ge k$ 的有恰好 $j$ 位的数的个数.设为 $c_{j,k}$. 那么答案就是:(考虑把 $k$ 的贡献拆开 ...

  4. 【CF908G】New Year and Original Order 数位DP

    [CF908G]New Year and Original Order 题意:令S(i)表示将i中所有数位上的数拿出来,从小到大排序后组成一个新的数的值.如S(50394)=3459.求$\sum\l ...

  5. 【CF908G】New Year and Original Order

    [CF908G]New Year and Original Order 题面 洛谷 题解 设\(f[i][j][k][l]\)表示当前在第\(i\)位有\(j\)位大于等于\(k\),当前有没有卡上界 ...

  6. Good Bye 2017 G. New Year and Original Order

    G. New Year and Original Order time limit per test 2 seconds memory limit per test 256 megabytes inp ...

  7. CF908G Original Order

    题目大意: 定义\(R(x) = 每个数在各数位排序后得到的数\) 例如:\(R(321597) = 123579\) 给定一个\(n<=10^{700}\),求\(\sum _{i=1}^n ...

  8. HDU 5642 King's Order 动态规划

    King's Order 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5642 Description After the king's speec ...

  9. 908G New Year and Original Order

    传送门 分析 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string ...

随机推荐

  1. iOS保持App真后台运行

    https://www.jianshu.com/p/d466f2da0d33 在我看来,苹果系统与安卓系统最直观的区别就是后台处理方式了吧,安卓手机一旦开启了很多app放到后台,即使前台什么也不做,就 ...

  2. 【学习总结】【Java】Git学习-上传本地已有代码到GitHub

    < Git学成归来后的第一次实战 > 上传本地已有代码到GitHub 以之前学了一小半的Java基础教程代码为例 <深坑预警:在GitHub新建仓库那一步,不要勾选readme,不然 ...

  3. FAIL - Deploy Upload Failed, Exception: [org.apache.tomcat.util.http.fileupload.FileUploadBase$SizeLimitExceededException: the request was rejected because its size (112503036) exceeds the configured

    Message:  FAIL - Deploy Upload Failed, Exception: [org.apache.tomcat.util.http.fileupload.FileUpload ...

  4. js判断手机机型,然后进行相对应的操作

    我们通过浏览器内置的userAgent来判断手机机型. 具体代码如下: var u = navigator.userAgent, app = navigator.appVersion; if(/App ...

  5. 原生node路由操作以及注意事项

    var http = require("http"); var url = require("url"); var ejs = require("ej ...

  6. (二)Wireshark的实用表格

    主要内容: 1.了解端点概念,学习如何在Wireshark中查询端点信息 2.学习利用端点窗口与会话窗口来分析数据包的特点 3.学会Wireshark的协议分层统计窗口的用法 一.端点概念 和数学里的 ...

  7. python学习笔记(10)--组合数据类型(字典类型)

    理解映射: 映射是一种键(索引)和值(数据)的对应.字典是键值对的集合,键值之间无序.用大括号表示{},和dict()创建,键值对用冒号:表示. {键:值,键:值,键:值} >>> ...

  8. python 网络编程 IO多路复用之epoll

    python网络编程——IO多路复用之epoll 1.内核EPOLL模型讲解     此部分参考http://blog.csdn.net/mango_song/article/details/4264 ...

  9. 根据request获取请求客户端的外网ip

    //根据request获取外网ip private static String getRemoteIp(HttpServletRequest request) { //x-forwarded-for: ...

  10. sql中的begin catch 。。。end catch 的用法

    begin catch ...end  catch 是用来处理异常的 begintry--SQLendtry begincatch--sql (处理出错动作)endcatch 我们将可能会出错的sql ...