【CF908G】New Year and Original Order(动态规划)

题面

洛谷

CF

题解

设\(f[i][j][k][0/1]\)表示当前填到了第\(i\)位,有\(j\)个大于等于\(k\)的数,是否卡到上界的方案数。

这个东西算完之后,等价于默认排好序了。

看起来可以枚举每个数字出现在第几位了。

然而实际上不知道这个数字的出现次数,所以不能按照\(10^j*k\)这样子计算贡献。

怎么办呢,假设前面有\(j\)个数大于\(k\)的数,那么就产生\(\sum_{i=0}^{j-1}10^i\)的贡献。

把样例蒯下来手玩一下就知道为啥是对的了。

\(3459\):\(\ge 3\)的有\(4\)个,\(\ge 4\)的有\(3\)个,\(\ge 5\)的有\(2\)个,\(\ge 6..8\)的有\(2\)个,\(\ge 9\)的有\(1\)个。

所以贡献就是\(1111*3+111*4+11*1+11*3+1*9=3456\)。

本质上是考虑把\(k*10^i\)拆成\(k\)个\(10^i\)的和的形式。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,ans;char s[705];
int f[705][705][10][2];
int main()
{
scanf("%s",s+1);n=strlen(s+1);
for(int i=0;i<=9;++i)f[0][0][i][0]=1;
for(int i=1;i<=n;++i)
for(int j=0;j<=i;++j)
for(int k=0;k<=9;++k)
for(int l=0;l<=1;++l)
for(int p=0,lim=l?9:s[i]-48;p<=lim;++p)
add(f[i][j+(k<=p)][k][l|(p<lim)],f[i-1][j][k][l]);
for(int k=1;k<=9;++k)
for(int j=1,v=1;j<=n;++j,v=(10ll*v+1)%MOD)
add(ans,1ll*v*(f[n][j][k][0]+f[n][j][k][1])%MOD);
printf("%d\n",ans);return 0;
}

【CF908G】New Year and Original Order(动态规划)的更多相关文章

  1. CF908G New Year and Original Order 数位DP

    传送门 看到数据范围到\(10^{700}\)毫无疑问数位DP.那么我们最重要的问题是如何有效地维护所有数位排序之后的数的值. 对于某一个数\(x\),设\(f_{x,i} (i \in [1,9]) ...

  2. CF908G New Year and Original Order

    题面 题意翻译 给定$n<=10^{700}$,问$1$到$n$中每个数在各数位排序后得到的数的和.答案$mod\;10^9+7$. 题解 考虑设$f[i][j][k][0/1]$表示前$i$位 ...

  3. CF908G New Year and Original Order(DP,数位 DP)

    又一次降智…… (数位 DP 原来可以写这么短,学到了) 问题可以转化为求数位中 $\ge k$ 的有恰好 $j$ 位的数的个数.设为 $c_{j,k}$. 那么答案就是:(考虑把 $k$ 的贡献拆开 ...

  4. 【CF908G】New Year and Original Order 数位DP

    [CF908G]New Year and Original Order 题意:令S(i)表示将i中所有数位上的数拿出来,从小到大排序后组成一个新的数的值.如S(50394)=3459.求$\sum\l ...

  5. 【CF908G】New Year and Original Order

    [CF908G]New Year and Original Order 题面 洛谷 题解 设\(f[i][j][k][l]\)表示当前在第\(i\)位有\(j\)位大于等于\(k\),当前有没有卡上界 ...

  6. Good Bye 2017 G. New Year and Original Order

    G. New Year and Original Order time limit per test 2 seconds memory limit per test 256 megabytes inp ...

  7. CF908G Original Order

    题目大意: 定义\(R(x) = 每个数在各数位排序后得到的数\) 例如:\(R(321597) = 123579\) 给定一个\(n<=10^{700}\),求\(\sum _{i=1}^n ...

  8. HDU 5642 King's Order 动态规划

    King's Order 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5642 Description After the king's speec ...

  9. 908G New Year and Original Order

    传送门 分析 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string ...

随机推荐

  1. 在网站开发时,可以设置防盗,不被复制和F12

    禁止小功能 //禁止右键 document.oncontextmenu = function () { return false } //禁止f12 document.onkeydown = func ...

  2. 前端三大框架Angular & React & Vue

    前端三大框架: Angular[Google]:一套框架,多种平台移动端 & 桌面端.学会用Angular构建应用,然后把这些代码和能力复用在多种多种不同平台的应用上 —— Web.移动 We ...

  3. h5 文件下载

    一.a 标签 移动端不支持 onDownFile= (url, filename) => { const downUrl = `http://10.1.109.123:19092/down/to ...

  4. 区块链教程(二):比特币、区块链、以太坊、Hyperledger的关系

    不知道大家喜不喜欢音乐! 朋克音乐:诞生于七十年代中期,一种源于六十年代车库摇滚和前朋克摇滚的简单摇滚乐.它由一个简单悦耳的主旋律和三个和弦组成,经过演变,朋克已经逐渐脱离摇滚,成为一种独立的音乐,朋 ...

  5. Day1 基础知识

    数据类型,字符编码 二进制: 定义:二进制数据是用0和1两个数码来表示的数.它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”.当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是 ...

  6. Jquery模拟多选框(checkbox)

    代码如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...

  7. Linux基础学习笔记3-用户权限

    本章内容 用户user 令牌token,identity Linux用户:Uername/UID 管理员:root,0 普通用户:1-65535 系统用户:1-499,1-999(Centos7) 对 ...

  8. linux重装系统,如何保存硬盘中的内容

    以前没有太关注重装系统如何保留下硬盘中的内容.但是最近有一些文件在重装系统后确实需要继续保留下来,于是花了点时间了解下磁盘分区相关的东东. 参考 http://blog.csdn.net/openn/ ...

  9. vue & iview

    vue & iview ui components https://codepen.io/webgeeker/pen/EJmQxQ https://www.iviewui.com/docs/g ...

  10. 动态sql and在前 逗号在后