【CF908G】New Year and Original Order(动态规划)
【CF908G】New Year and Original Order(动态规划)
题面
题解
设\(f[i][j][k][0/1]\)表示当前填到了第\(i\)位,有\(j\)个大于等于\(k\)的数,是否卡到上界的方案数。
这个东西算完之后,等价于默认排好序了。
看起来可以枚举每个数字出现在第几位了。
然而实际上不知道这个数字的出现次数,所以不能按照\(10^j*k\)这样子计算贡献。
怎么办呢,假设前面有\(j\)个数大于\(k\)的数,那么就产生\(\sum_{i=0}^{j-1}10^i\)的贡献。
把样例蒯下来手玩一下就知道为啥是对的了。
\(3459\):\(\ge 3\)的有\(4\)个,\(\ge 4\)的有\(3\)个,\(\ge 5\)的有\(2\)个,\(\ge 6..8\)的有\(2\)个,\(\ge 9\)的有\(1\)个。
所以贡献就是\(1111*3+111*4+11*1+11*3+1*9=3456\)。
本质上是考虑把\(k*10^i\)拆成\(k\)个\(10^i\)的和的形式。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,ans;char s[705];
int f[705][705][10][2];
int main()
{
scanf("%s",s+1);n=strlen(s+1);
for(int i=0;i<=9;++i)f[0][0][i][0]=1;
for(int i=1;i<=n;++i)
for(int j=0;j<=i;++j)
for(int k=0;k<=9;++k)
for(int l=0;l<=1;++l)
for(int p=0,lim=l?9:s[i]-48;p<=lim;++p)
add(f[i][j+(k<=p)][k][l|(p<lim)],f[i-1][j][k][l]);
for(int k=1;k<=9;++k)
for(int j=1,v=1;j<=n;++j,v=(10ll*v+1)%MOD)
add(ans,1ll*v*(f[n][j][k][0]+f[n][j][k][1])%MOD);
printf("%d\n",ans);return 0;
}
【CF908G】New Year and Original Order(动态规划)的更多相关文章
- CF908G New Year and Original Order 数位DP
传送门 看到数据范围到\(10^{700}\)毫无疑问数位DP.那么我们最重要的问题是如何有效地维护所有数位排序之后的数的值. 对于某一个数\(x\),设\(f_{x,i} (i \in [1,9]) ...
- CF908G New Year and Original Order
题面 题意翻译 给定$n<=10^{700}$,问$1$到$n$中每个数在各数位排序后得到的数的和.答案$mod\;10^9+7$. 题解 考虑设$f[i][j][k][0/1]$表示前$i$位 ...
- CF908G New Year and Original Order(DP,数位 DP)
又一次降智…… (数位 DP 原来可以写这么短,学到了) 问题可以转化为求数位中 $\ge k$ 的有恰好 $j$ 位的数的个数.设为 $c_{j,k}$. 那么答案就是:(考虑把 $k$ 的贡献拆开 ...
- 【CF908G】New Year and Original Order 数位DP
[CF908G]New Year and Original Order 题意:令S(i)表示将i中所有数位上的数拿出来,从小到大排序后组成一个新的数的值.如S(50394)=3459.求$\sum\l ...
- 【CF908G】New Year and Original Order
[CF908G]New Year and Original Order 题面 洛谷 题解 设\(f[i][j][k][l]\)表示当前在第\(i\)位有\(j\)位大于等于\(k\),当前有没有卡上界 ...
- Good Bye 2017 G. New Year and Original Order
G. New Year and Original Order time limit per test 2 seconds memory limit per test 256 megabytes inp ...
- CF908G Original Order
题目大意: 定义\(R(x) = 每个数在各数位排序后得到的数\) 例如:\(R(321597) = 123579\) 给定一个\(n<=10^{700}\),求\(\sum _{i=1}^n ...
- HDU 5642 King's Order 动态规划
King's Order 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5642 Description After the king's speec ...
- 908G New Year and Original Order
传送门 分析 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string ...
随机推荐
- shell脚本使用记录一:操作文件
一,连接远程数据库(保证在服务器上能使用mysql命令行,至少要安装mysql客户端) #!/bin/bash HOSTNAME="ip" PORT=" USERNAME ...
- UTC时间、GMT时间、本地时间、Unix时间戳
引用: https://blog.csdn.net/u012102306/article/details/51538574 https://blog.csdn.net/foxir/article/de ...
- vue图片被加了盗链
https://www.cnblogs.com/dongcanliang/archive/2017/04/01/6655061.html <meta name="referrer&qu ...
- C#如何调用C++的dll
背景 一个项目,算法部分使用C++的openCV库编写图像处理程序,编译成dll,用户界面采用C#编写,去调用该dll暴露的接口. C#编写的是托管代码,编译生成微软中间语言,而普通C++代码则编译 ...
- Python 基础之----网络编程
阅读目录 一 客户端/服务端架构 二 osi七层 三 socket层 四 socket是什么 五 套接字发展史及分类 六 套接字工作流程 七 基于TCP的套接字 八 基于UDP的套接字 九 粘包现象 ...
- python爬虫之git的团队协作
一.Git实践: commit,push,pull,status,add基本是最常用的几个命令. 1.首先我在github上创建了一个项目,然后我在本地的文件建立了一个普通的目录(git_data). ...
- WPF实现滚动显示的TextBlock
在我们使用TextBlock进行数据显示时,经常会遇到这样一种情况就是TextBlock的文字内容太多,如果全部显示的话会占据大量的界面,这是我们就会只让其显示一部分,另外的一部分就让其随着时间的推移 ...
- 莫烦theano学习自修第一天【常量和矩阵的运算】
1. 代码实现如下: #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ # 导入numpy模块,因为numpy是常用的计算模块 import numpy as ...
- java 中 Math类
package cn.liuliu.com; import java.math.BigDecimal; import java.math.BigInteger; /* * 一.Math类? * * 1 ...
- linux下ssh无法连接的原因
在虚拟机上安装了ubuntu16.04 server,用本机 ssh 连接的时候 无法连接上: 忽然想起在安装的时候有个openssh好像没有勾选,所以在虚拟机上 apt install openss ...