原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html

UPD(2018-03-26):蒟蒻回来重新学数论了。更新了题解和代码。之前的怼到后面去了。


题目传送门 - BZOJ3560


题意概括

  给定$n$个正整数$a_1,a_2,a_3,...,a_n$,求

  $$\Huge\sum_{i_1|a_1}\sum_{i_2|a_2}\cdots \sum_{i_n|a_n}\varphi(i_1i_2i_3...i_n)$$

  答案对$10^9+7$取模。

  $1\leq n\leq 10^5,1\leq a_i\leq 10^7$

题解

  考虑到$\varphi$是积性函数,所以我们可以对于每一个质数分别考虑。

  对于每一个质数,考虑它有哪些情况,同一个质数的所有情况贡献加起来,然后不同质数的答案乘起来就OKla。

  考虑对一个质数的处理。

  先处理出每一个$a_i$含有该质因子几个(假设有$t_i$个)。保存好。

  我们显然不可能穷举所有情况。我们考虑采用不同的$a_i$分开贡献的方式。

  由于(p为质数)$f(p)=p-1,f(p^i)=f(p^{i-1})*p$,于是一开始的那个$f(p)=p-1$就特别令人不爽!!

  于是我们暂且假装$f(p)=p$。这样的话,数$a_i$的贡献就是$\sum_{j=0}^{t_i}f(p^j)$。

  于是算出来的当前质数的总贡献就是$\prod_{i=1}^{n}\sum_{j=0}^{t_i}f(p^j)$。

  那个$\sum_{j=0}^{k}f(p^j)$可以预处理。

  但是别忘了这个是个假贡献。我们假装了$f(p)=p$,事实上不是。

  我们考虑还原。

  该贡献可以分成两个部分:

    1.$\prod_{j=1}^{n}i_j$中不含该质数因子,贡献为1。

    2.包含,贡献比标准多了$\frac{1}{p-1}$。

  于是搞个逆元还原一下2的部分就可以得到正确答案了。

  具体实现大概我知道的有2种方式。

  设$m=max\{a_i,i\in[1,n]\}$。

  一种是我之前抄的做法:先分解n个数,然后按照质因子排序分段处理。时间复杂度$O(n \sqrt m +n log\ m)$。

  一种是我这次写的做法:先筛法把小于$\sqrt m$的素数筛出来,然后对于每一个因子枚举n个数统计相关信息。对于大于$\sqrt m$的质因数用map存下来。最后一个一个算质数贡献。复杂度相同。常数貌似变小了。(BZOJ上快了近4倍)

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1e5+5,M=1e7+5,mod=1e9+7;
int prime[N],pcnt,ptot[N][30];
bool f[M];
map <int,int> hptot;
void get_prime(){
pcnt=0;
memset(f,true,sizeof f);
f[0]=f[1]=0;
for (int i=2;i*i<M;i++){
if (!f[i])
continue;
prime[++pcnt]=i;
for (int j=1;j<=i;j++)
f[i*j]=0;
}
}
LL Pow(LL x,LL y){
if (!y)
return 1LL;
LL xx=Pow(x,y/2);
xx=xx*xx%mod;
if (y&1LL)
xx=xx*x%mod;
return xx;
}
LL Inv(LL x){
return Pow(x,mod-2);
}
int n,a[N],v[N],cntv=0;
int main(){
get_prime();
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d",&a[i]);
memset(ptot,0,sizeof ptot);
hptot.clear();
for (int i=1;i<=pcnt;i++)
for (int j=1;j<=n;j++){
int k=0;
while (a[j]%prime[i]==0)
a[j]/=prime[i],k++;
ptot[i][k]++;
}
for (int i=1;i<=n;i++)
if (a[i]>1){
if (hptot[a[i]]==0)
v[++cntv]=a[i];
hptot[a[i]]++;
}
LL ans=1;
for (int i=1;i<=pcnt;i++){
LL phi=prime[i]+1,add=1;
for (int j=1;j<30;j++){
while (ptot[i][j]--)
add=add*phi%mod;
phi=(phi*prime[i]+1)%mod;
}
ans=ans*((add-1+mod)%mod*Inv(prime[i])%mod*(prime[i]-1)%mod+1)%mod;
}
for (int i=1;i<=cntv;i++){
LL phi=v[i]+1,add=1;
while (hptot[v[i]]--)
add=add*phi%mod;
ans=ans*((add-1+mod)%mod*Inv(v[i])%mod*(v[i]-1)%mod+1)%mod;
}
printf("%lld",ans);
return 0;
}

  

  

——————Old——————

题意概括

给定n个正整数a1,a2,…,an,求

的值(答案模10^9+7)。

1<=n<=10^5,1<=ai<=10^7。


题解

  本人是蒟蒻。

  可以看这位大佬的(给出链接)

http://blog.csdn.net/popoqqq/article/details/42739963


代码

呵呵,调试的时候照着他的改,改的几乎一样……

#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
const LL N=100005;
LL mod=1e9+7;
LL n,tot=0;
struct Node{
LL p,t;
}q[N*20];
bool operator < (Node a,Node b){
return a.p<b.p;
}
void fj(LL v){
for (LL i=2;i*i<=v;i++)
if (v%i==0){
q[++tot].p=i;
q[tot].t=0;
while (v%i==0)
v/=i,q[tot].t++;
}
if (v>1)
q[++tot].p=v,q[tot].t=1;
}
LL Pow(LL x,LL y,LL mod){
if (y==0)
return 1LL;
LL xx=Pow(x,y/2,mod);
xx=xx*xx%mod;
if (y&1LL)
xx=xx*x%mod;
return xx;
}
LL Inv(LL x,LL mod){
return Pow(x,mod-2,mod);
}
LL calc(LL L,LL R){
LL sum[30];
LL p=q[L].p,res=1;
sum[0]=1;
for (int i=1;i<30;i++)
sum[i]=(sum[i-1]*p+1)%mod;
for (int i=L;i<=R;i++)
res=res*sum[q[i].t]%mod;
res=(res-1)*(p-1)%mod*Inv(p,mod)%mod+1;
return res%mod;
}
int main(){
scanf("%lld",&n);
for (int i=1,a;i<=n;i++){
scanf("%lld",&a);
fj(a);
}
sort(q+1,q+tot+1);
int last=0;
LL ans=1;
for (int i=1;i<=tot;i++)
if (i==tot||q[i].p!=q[i+1].p)
ans=ans*calc(last+1,i)%mod,last=i;
printf("%lld",(ans%mod+mod)%mod);
return 0;
}

  

BZOJ3560 DZY Loves Math V 数论 快速幂的更多相关文章

  1. BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演

    原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...

  2. BZOJ3560 DZY Loves Math V(欧拉函数)

    对每个质因子分开计算再乘起来.使用类似生成函数的做法就很容易统计了. #include<iostream> #include<cstdio> #include<cmath ...

  3. BZOJ3560 : DZY Loves Math V

    因为欧拉函数是非完全积性函数,所以可以考虑对每个数进行分解质因数,将每个质数的解乘起来即可. 对于一个质数$p$,设它在各个数中分别出现了$b_1,b_2,...b_n$次,那么由生成函数和欧拉函数的 ...

  4. [BZOJ3560]DZY Loves Math V(欧拉函数)

    https://www.cnblogs.com/zwfymqz/p/9332753.html 由于欧拉函数是积性函数,可以用乘法分配律变成对每个质因子分开算最后乘起来.再由欧拉函数公式和分配律发现就是 ...

  5. 【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)

    3560: DZY Loves Math V Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 241  Solved: 133 Description ...

  6. 【BZOJ3960】DZY Loves Math V(数论)

    题目: BZOJ3560 分析: orz跳瓜. 欧拉函数的公式: \[\phi(n)=n(\prod \frac{p_i-1}{p_i})\] 其中 \(p_i\) 取遍 \(n\) 的所有质因子. ...

  7. 【bzoj3560】DZY Loves Math V 欧拉函数

    题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...

  8. bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法

    给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...

  9. bzoj DZY Loves Math V

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 509  Solved: 284[Submit][Status][Discuss] Descriptio ...

随机推荐

  1. POJ 3723

    最大生成树 #include<iostream> #include<cstdio> #include<cstring> #include<set> #i ...

  2. LA 6893 矩阵HASH (模板)

    #include<stdio.h> #include<string.h> typedef unsigned long long ULL; ; ; int test,n,m,x, ...

  3. wireshark找(检测)不到(捕获)网卡的解决办法

    1 前言 有时候打开wireshark,会提示找不到可用网卡,此时是因为NetGroup Packet Filter Driver 服务没有开启. 环境:笔记本 系统:Win10 网络:WIFI 2  ...

  4. Unix的哲学

    先讲两个很老的小故事. 第一个故事. 有一家日本最大的化妆品公司,收到了用户的投诉.用户抱怨买来的肥皂盒是空的.这家公司为了防止再发生这样的事故,很辛苦地发明了一台X光检查器,能够透视每一个出货的肥皂 ...

  5. js之雪花飘落

    有很多网站都有雪花或花瓣飘落的特效,看上去很好看.我来用js实现这个效果. 在写代码之前可以先引入bass.css对样式做下处理: 1.html部分 先建一个文件夹,在body中插入如下代码 < ...

  6. Winform中的TextBox的小技巧

    1  一些常用属性this.textBox5.PasswordChar = '@';  //密码的样式            this.textBox5.UseSystemPasswordChar = ...

  7. liunx 安装 mysql 5.6

    第一步  解压文件 目录切换到/usr/local/ cd /usr/local/ 解压 tar zxvf mysql-5.6.33-linux-glibc2.5-x86_64.tar.gz 重命名为 ...

  8. Oracle Ora 错误解决方案合集

    注:本文来源于 < Oracle学习笔记 --- Oracle ORA错误解决方案 > ORA-00001: 违反唯一约束条件 (.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发 ...

  9. centos7_ linux : Nginx安装手册

    一: nginx安装环境 1: oracle vm虚拟机+Centos7系统的yum环境的安装 配置本地yum库(用root用户操作) 创建挂载目录 mkdir /mnt/cdrom 查看挂载目录 l ...

  10. Confluence 6 Cron 表达式

    一个 cron 表达式是以 6-7 时间字段来定义一个计划任务是如何按照时间被执行的.每一个字段中的数据库而已为数字或者是一些特定的字符串来进行表达.每一个字段是使用空格或者 tab 进行分隔的. 下 ...