HDU6280 From Tree to Graph
下午打了湘潭邀请赛,好像缓解了一下北京网络赛超强的自闭感。补一下这个图论题。(补了很久)
题意:给你一颗n节点的树,有m个操作,每次向xi和lca(xi,yi)连边,然后每次zi就是对于新的图在删除每一个点后连通块个数的异或和。然后求的是m次操作后x,y的值。
题解:看这个问题看了好久我都完全无从下手,题意也理解了半天,只知道有环prprpr,然后和x到lca这条链上的点有关系。但是感觉怎么都会T,就只能暴力更新。然后就看别人的题解,并且打开了画图软件,首先,对于一颗树每个点删除后产生的联通块个数就是它的入度和出度的和。然后异或一下就好。也就是和它度数有关。然后对于每次加的那条边,可以发现这条边的两个点的删除后个数不变,而那条链上的其余点联通块个数减减。然后就是最关键的,对于每条边,最多只会更新一次,因为成环后,新加的边所形成的新环,如果更新的链也通过之前存在的环走过的链,此时对于这条链上的点是无影响的,因为原来的这条边已经被减减过了。画图是这样,写博客中间又仔细想了一想,应该是这样理解的?也就是我们可以跳过这些环,缩环为点,用并查集缩环???第一次听说,然后写法上挺有讲究的吧,它可能并查集跳到的点会超过lca,所以要用深度判断一下。如果写的不完全对,以后懂了来改好了
#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define _mp make_pair
#define ldb long double
using namespace std;
const int maxn=5005;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int lca[maxn][20];
int bcg[maxn],depth[maxn];
int n,m,a,b,x,y;
int fir[maxn],nxt[maxn*2],to[maxn*2];
int du[maxn];
int cnt;
int ans;
void add_e(int x,int y)
{
++cnt;nxt[cnt]=fir[x];fir[x]=cnt;to[cnt]=y;
++cnt;nxt[cnt]=fir[y];fir[y]=cnt;to[cnt]=x;
}
int findd(int x)
{
return bcg[x]==x?bcg[x]:bcg[x]=findd(bcg[x]);
}
int LCA(int x,int y)
{
if(depth[x]<depth[y])swap(x,y);
int dd=depth[x]-depth[y];
for(int i=18;i>=0;i--)
{
if(dd&(1<<i))x=lca[x][i];
}
if(x==y)return y;
for(int i=18;i>=0;i--)
{
if(lca[x][i]!=lca[y][i])
{
x=lca[x][i];
y=lca[y][i];
}
}
return lca[x][0];
}
void dfs(int x,int fa)
{
lca[x][0]=fa;
depth[x]=depth[fa]+1;
for(int i=fir[x];i;i=nxt[i])
{
int pp=to[i];
if(pp==fa)continue;
dfs(pp,x);
}
}
void lca_init()
{
dfs(1,0);
depth[0]=0;
for(int k=1;k<=18;k++)
{
for(int i=1;i<=n;i++)
{
lca[i][k]=lca[lca[i][k-1]][k-1];
}
}
}
void init()
{
memset(depth,0,sizeof(depth));
memset(lca,0,sizeof(lca));
for(int i=1;i<=n;i++)bcg[i]=i;
for(int i=1;i<=n;i++)du[i]=0;
cnt=0;
memset(fir,0,sizeof(fir));
}
void update(int x,int y)
{
x=findd(x);
if(depth[lca[x][0]]<=depth[y]||lca[x][0]==0)
{
return ;
}
ans=ans^du[lca[x][0]]^(--du[lca[x][0]]);
bcg[x]=lca[x][0];
update(lca[x][0],y);
}
int main()
{
while(~scanf("%d%d%d%d%d%d",&n,&m,&a,&b,&x,&y))
{
init();
int p,q;
for(int i=1;i<n;i++)
{
scanf("%d%d",&p,&q);
p++,q++;
add_e(p,q);
du[p]++,du[q]++;
}
lca_init();
ans=0;
for(int i=1;i<=n;i++)
{
ans^=du[i];
}
for(int i=0;i<m;i++)
{
int nx=(a*x+b*y+ans)%n;
int ny=(b*x+a*y+ans)%n;
x=nx;
y=ny;
update(x+1,LCA(x+1,y+1));
}
printf("%d %d\n",x,y); }
}
HDU6280 From Tree to Graph的更多相关文章
- HDU 6280 From Tree to Graph(2018 湘潭邀请 E题,树的返祖边)
其实打返祖边就相当于$x$到祖先这一段点(不包括两端)答案都要减$1$. 然后每个点最多减$1$次$1$. #include <bits/stdc++.h> using namespace ...
- 湘潭邀请赛 2018 E From Tree to Graph
题意: 给出一棵树以及m,a,b,x0,y0.之后加m条边{(x1,LCA(x1,y1)),(x2,LCA(x2,y2))...(xm,LCA(xm,ym))}.定义z = f(0)^f(1)^... ...
- Clone Graph leetcode java(DFS and BFS 基础)
题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...
- Graph图总结
将COMP20003中关于Graph的内容进行总结,内容来自COMP20003,中文术语并不准确,以英文为准. Graph G = {V, E} 顶Vertices V: can contain in ...
- CF375D Tree and Queries
题意翻译 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. 感谢@elijahqi 提供的翻译 ...
- UVALive 6910 Cutting Tree 并查集
Cutting Tree 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8& ...
- CodeForces - 963B Destruction of a Tree (dfs+思维题)
B. Destruction of a Tree time limit per test 1 second memory limit per test 256 megabytes input stan ...
- codeforces 963B Destruction of a Tree
B. Destruction of a Tree time limit per test 1 second memory limit per test 256 megabytes input stan ...
- 963B:Destruction of a Tree
You are given a tree (a graph with n vertices and n - 1 edges in which it's possible to reach any ve ...
随机推荐
- Nginx三部曲(1)基础
我们会告诉你 Nginx 是如何工作的,其背后的概念有哪些,以及如何优化它以提升应用程序的性能.还会告诉你如何安装,如何启动.运行. 这个教程包括三节: 基础概念——你可以了解命令(directive ...
- php常用方法
在日常开发中,经常我们使用系统方法或者是自己封装的方法进行项目的开发.再此总结一下!!! 一.对于字符串截取 1.使用mbstring扩展 (注意编码的设置) mb_substr($str,2,5, ...
- JQuery动态修改样式
JQuery动态修改样式 SetStyle(); function SetStyle() { $(".toolbar").remove(); $(".placeholde ...
- Jquery ajax传递xml方式在ie8下兼容问题
主要问题就是ie8把xml格式在打开的时候转换成了string,我们只用把其转换回xml就可以了. $.ajax({ type:’GET’, url:’list.php?pagenow=’+count ...
- MySQL Connector/ODBC 2.50 (MyODBC 2.50)连接方式
一.MySQL Connector/ODBC 2.50 (MyODBC 2.50)连接方式 1.本地数据库连接Driver={MySQL};Server=localhost;Option=16834; ...
- CLOUD不审核修改物料
- 微服务架构中APIGateway原理
背景 我们知道在微服务架构风格中,一个大应用被拆分成为了多个小的服务系统提供出来,这些小的系统他们可以自成体系,也就是说这些小系统可以拥有自己的数据库,框架甚至语言等,这些小系统通常以提供 Rest ...
- Lodop输出页面input文本框的最新值
默认使用Lodop打印页面上的文本框等,会发现虽然页面上文本框输入了值,打印预览却是空的,这是由于没有把最新的值传入Lodop. 如图,演示的是Lodop如何输出文本框内的新值,这里整个页面只有inp ...
- 手写事务管理器 也是spring实现事务管理的原理
- python与java的内存机制不一样;java的方法会进入方法区直到对象消失 方法才会消失;python的方法是对象每次调用都会创建新的对象 内存地址都不i一样
python与java的内存机制不一样;java的方法会进入方法区直到对象消失 方法才会消失;python的方法是对象每次调用都会创建新的对象 内存地址都不i一样