传送门:A and B and Lecture Rooms

题意:给定一棵树,每次询问到达点u,v距离相等的点有多少个。

分析:按情况考虑:

1.abs(deep[u]-deep[v])%2==1时,必定不存在到达u,v距离相等的点。

2.如果deep[u]==deep[v]时,ans=n-num[lca(u,v)u在的儿子树]-num[lca(u,v)v在的儿子树]。

3.如果deep[u]!=deep[v]时,在u到v的路径中找出到达u,v相等的节点x,则ans=num[x]-num[u在的x儿子树].

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <map>
#define N 200010
#define LL long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
struct edge
{
int v,next;
edge() {}
edge(int v,int next):v(v),next(next) {}
} e[N];
int head[N],tot;
int num[N],deep[N];
int fa[N][];
void init()
{
memset(head,-,sizeof(head));
tot=;
}
void addedge(int u,int v)
{
e[tot]=edge(v,head[u]);
head[u]=tot++;
}
void dfs(int x,int f)
{
for(int i=; i<; i++)
{
if(deep[x]<(<<i))break;
fa[x][i]=fa[fa[x][i-]][i-];
}
for(int i=head[x]; ~i; i=e[i].next)
{
int v=e[i].v;
if(v==f)continue;
fa[v][]=x;
deep[v]=deep[x]+;
dfs(v,x);
num[x]+=num[v];
}
}
int lca(int x,int y)
{
if(deep[x]<deep[y])swap(x,y);
int t=deep[x]-deep[y];
for(int i=; i<=; i++)
if((<<i)&t)x=fa[x][i];
for(int i=; i>=; i--)
{
if(fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
}
if(x==y)return x;
return fa[x][];
}
int main()
{
int n,m;
while(scanf("%d",&n)>)
{
init();
for(int i=; i<n; i++)
{
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
for(int i=;i<=n;i++)num[i]=;
deep[]=;
dfs(,);
scanf("%d",&m);
while(m--)
{
int x,y;
scanf("%d%d", &x,&y);
if(deep[x]<deep[y])swap(x,y);
if((deep[x]-deep[y])&) printf("0\n");
else
{
int xy=lca(x, y),tx=x;
int t=(deep[x]+deep[y]-*deep[xy])/-;
for(int i=;i<;i++)if(t&(<<i))x=fa[x][i];
if(deep[tx]==deep[y])
{
t=deep[y]-deep[xy]-;
for(int i=;i<;i++)if(t&(<<i))y=fa[y][i];
printf("%d\n",n-num[x]-num[y]);
}
else printf("%d\n", num[fa[x][]]-num[x]);
}
}
}
}

CF 519E(树上倍增求lca)的更多相关文章

  1. [学习笔记] 树上倍增求LCA

    倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...

  2. 树上倍增求LCA(最近公共祖先)

    前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...

  3. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  4. 树上倍增求LCA及例题

    先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你 ...

  5. Codeforces 609E (Kruskal求最小生成树+树上倍增求LCA)

    题面 传送门 题目大意: 给定一个无向连通带权图G,对于每条边(u,v,w)" role="presentation" style="position: rel ...

  6. 树上倍增求LCA详解

    LCA(least common ancestors)最近公共祖先 指的就是对于一棵有根树,若结点z既是x的祖先,也是y的祖先(不要告诉我你不知道什么是祖先),那么z就是结点x和y的最近公共祖先. 定 ...

  7. [luogu3379]最近公共祖先(树上倍增求LCA)

    题意:求最近公共祖先. 解题关键:三种方法,1.st表 2.倍增法 3.tarjan 此次使用倍增模板(最好采用第一种,第二种纯粹是习惯) #include<cstdio> #includ ...

  8. 树上倍增求LCA

    大概思想就是,节点$i$的第$2^{j}$个父节点是他第$2^{j-1}$个父亲的第$2^{j-1}$个父亲 然后可以$O(nlogn)$时间内解决…… 没了? //fa[i][j]表示i的第2^j个 ...

  9. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

随机推荐

  1. Python中使用Flask、MongoDB搭建简易图片服务器

    主要介绍了Python中使用Flask.MongoDB搭建简易图片服务器,本文是一个详细完整的教程,需要的朋友可以参考下 1.前期准备 通过 pip 或 easy_install 安装了 pymong ...

  2. 【剑指offer】从上向下打印二叉树

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/26089165 剑指offer上的第23题,实际上就是考察二叉树的层序遍历,详细思想能够參考 ...

  3. Oracle管道函数(Pipelined Table Function)介绍

    一 概述: 1.管道函数即是能够返回行集合(能够使嵌套表nested table 或数组 varray)的函数,我们能够像查询物理表一样查询它或者将其  赋值给集合变量. 2.管道函数为并行运行,在普 ...

  4. Android - Animation 贝塞尔曲线之美

    概述 贝塞尔曲线于1962,由法国工程师皮埃尔·贝塞尔所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计.贝塞尔曲线最初由Paul de Casteljau于1959年运用de Casteljau演算 ...

  5. Kendo UI开发教程(24): 单页面应用(二) Router 类

    Route类负责跟踪应用的当前状态和支持在应用的不同状态之间切换.Route通过Url的片段功能(#url)和流量器的浏览历史功能融合在一起.从而可以支持把应用的某个状态作为书签添加到浏览器中.Rou ...

  6. hbase memstorelab

    关于MemStore的补充 在通过HStore.add向store中加入�一个kv时,首先把数据写入到memstore中.这一点没有什么说明: publiclongadd(finalKeyValue ...

  7. 从零开始学C++之异常(一):C语言错误处理方法、C++异常处理方法(throw, try, catch)简介

    一.C语言错误处理方法 1.返回值(if … else语句判断错误) 2.errno(linux 系统调用) 3.goto语句(函数内局部跳转) 4.setjmp.longjmp(Do not use ...

  8. 解决Ajax.BeginForm还是刷新页面的问题

    在.net mvc中用Ajax.BeginForm来实现异步提交,在Ajax.BeginForm里面还是可以用submit按钮,一般来说 submit按钮是提交整个页面的数据.但是在Ajax.Begi ...

  9. 中文分词算法之最大正向匹配算法(Python版)

    最大匹配算法是自然语言处理中的中文匹配算法中最基础的算法,分为正向和逆向,原理都是一样的. 正向最大匹配算法,故名思意,从左向右扫描寻找词的最大匹配. 首先我们可以规定一个词的最大长度,每次扫描的时候 ...

  10. 基于visual Studio2013解决面试题之0304镜像二叉树

     题目