https://www.zhihu.com/question/20136144
作者:知乎用户
链接:https://www.zhihu.com/question/20136144/answer/37291465
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

尝试用高中概率知识去理解一下 Veterbi 算法。内容绝对粗浅,100% 抄袭,欢迎指正。用一个别人家的栗子来说一下。

1.题目背景:

从前有个村儿,村里的人的身体情况只有两种可能:健康或者发烧。
假设这个村儿的人没有体温计或者百度这种神奇东西,他唯一判断他身体情况的途径就是到村头我的偶像金正月的小诊所询问。
月儿通过询问村民的感觉,判断她的病情,再假设村民只会回答正常、头晕或冷。
有一天村里奥巴驴就去月儿那去询问了。
第一天她告诉月儿她感觉正常。
第二天她告诉月儿感觉有点冷。
第三天她告诉月儿感觉有点头晕。
那么问题来了,月儿如何根据阿驴的描述的情况,推断出这三天中阿驴的一个身体状态呢?
为此月儿上百度搜 google ,一番狂搜,发现维特比算法正好能解决这个问题。月儿乐了。

2.已知情况:

隐含的身体状态 = { 健康 , 发烧 }

可观察的感觉状态 = { 正常 , 冷 , 头晕 }

月儿预判的阿驴身体状态的概率分布 = { 健康:0.6 , 发烧: 0.4 }

月儿认为的阿驴身体健康状态的转换概率分布 = {
健康->健康: 0.7 ,
健康->发烧: 0.3 ,
发烧->健康:0.4 ,
发烧->发烧: 0.6
}

月儿认为的在相应健康状况条件下,阿驴的感觉的概率分布 = {
健康,正常:0.5 ,冷 :0.4 ,头晕: 0.1 ;
发烧,正常:0.1 ,冷 :0.3 ,头晕: 0.6
}
阿驴连续三天的身体感觉依次是: 正常、冷、头晕 。

3.题目:

已知如上,求:阿驴这三天的身体健康状态变化的过程是怎么样的?

4.过程:

根据 Viterbi 理论,后一天的状态会依赖前一天的状态和当前的可观察的状态。那么只要根据第一天的正常状态依次推算找出到达第三天头晕状态的最大的概率,就可以知道这三天的身体变化情况。
传不了图片,悲剧了。。。
1.初始情况:

  • P(健康) = 0.6,P(发烧)=0.4。

2.求第一天的身体情况:
计算在阿驴感觉正常的情况下最可能的身体状态。

  • P(今天健康) = P(正常|健康)*P(健康|初始情况) = 0.5 * 0.6 = 0.3
  • P(今天发烧) = P(正常|发烧)*P(发烧|初始情况) = 0.1 * 0.4 = 0.04

那么就可以认为第一天最可能的身体状态是:健康。
3.求第二天的身体状况:
计算在阿驴感觉冷的情况下最可能的身体状态。
那么第二天有四种情况,由于第一天的发烧或者健康转换到第二天的发烧或者健康。

  • P(前一天发烧,今天发烧) = P(前一天发烧)*P(发烧->发烧)*P(冷|发烧) = 0.04 * 0.6 * 0.3 = 0.0072
  • P(前一天发烧,今天健康) = P(前一天发烧)*P(发烧->健康)*P(冷|健康) = 0.04 * 0.4 * 0.4 = 0.0064
  • P(前一天健康,今天健康) = P(前一天健康)*P(健康->健康)*P(冷|健康) = 0.3 * 0.7 * 0.4 = 0.084
  • P(前一天健康,今天发烧) = P(前一天健康)*P(健康->发烧)*P(冷|发烧) = 0.3 * 0.3 *.03 = 0.027

那么可以认为,第二天最可能的状态是:健康。
4.求第三天的身体状态:
计算在阿驴感觉头晕的情况下最可能的身体状态。

  • P(前一天发烧,今天发烧) = P(前一天发烧)*P(发烧->发烧)*P(头晕|发烧) = 0.027 * 0.6 * 0.6 = 0.00972
  • P(前一天发烧,今天健康) = P(前一天发烧)*P(发烧->健康)*P(头晕|健康) = 0.027 * 0.4 * 0.1 = 0.00108
  • P(前一天健康,今天健康) = P(前一天健康)*P(健康->健康)*P(头晕|健康) = 0.084 * 0.7 * 0.1 = 0.00588
  • P(前一天健康,今天发烧) = P(前一天健康)*P(健康->发烧)*P(头晕|发烧) = 0.084 * 0.3 *0.6 = 0.01512

那么可以认为:第三天最可能的状态是发烧。

5.结论

根据如上计算。这样月儿断定,阿驴这三天身体变化的序列是:健康->健康->发烧。

维基百科的这个例子的动态图:File:Viterbi animated demo.gif

这个算法大概就是通过已知的可以观察到的序列,和一些已知的状态转换之间的概率情况,通过综合状态之间的转移概率和前一个状态的情况计算出概率最大的状态转换路径,从而推断出隐含状态的序列的情况。

veterbi的更多相关文章

  1. 隐马尔可夫模型HMM与维特比Veterbi算法(二)

    隐马尔可夫模型HMM与维特比Veterbi算法(二) 主要内容: 前向算法(Forward Algorithm) 穷举搜索( Exhaustive search for solution) 使用递归降 ...

  2. 隐马尔可夫模型HMM与维特比Veterbi算法(一)

    隐马尔可夫模型HMM与维特比Veterbi算法(一) 主要内容: 1.一个简单的例子 2.生成模式(Generating Patterns) 3.隐藏模式(Hidden Patterns) 4.隐马尔 ...

  3. hmm和Veterbi算法(一)

    只是略微的看了些,有点感觉,还未深入,做个记录. 参考: 隐马尔可夫 (HMM).前 / 后向算法.Viterbi 算法 再次总结 谁能通俗的讲解下 viterbi 算法? 数学之美第二版的第 26 ...

  4. Python 自然语言处理(1)中文分词技术

    中文分词技术 中文自动分词可主要归纳为“规则分词”“统计分词”和“混合分词”,规则分词主要是通过人工设立词库,按照一定方式进行匹配切分,实现简单高效,但对新词很难进行处理,统计分词能够较好应对新词发现 ...

  5. HMM模型学习笔记(维特比算法)

    维特比算法(Viterbi) 维特比算法  编辑 维特比算法是一种动态规划算法用于寻找最有可能产生观测事件序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔可夫模型中.术语“维特比 ...

  6. 维特比算法(Viterbi)及python实现样例

    维特比算法(Viterbi) 维特比算法 维特比算法shiyizhong 动态规划算法用于最可能产生观测时间序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔科夫模型中.术语“维特 ...

  7. 维特比算法(Viterbi)

    维特比算法(Viterbi) 维特比算法 编辑 维特比算法是一种动态规划算法用于寻找最有可能产生观测事件序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔可夫模型中.术语“维特比路 ...

  8. kaildi讲解

    转载声明:本文为转载文章 作者:ferb2015 原文地址:https://blog.csdn.net/eqiang8848/article/details/81543599 kaldi是一个开源的语 ...

随机推荐

  1. 用JAVA发送一个XML格式的HTTP请求

    import java.io.BufferedInputStream; import java.io.BufferedReader; import java.io.ByteArrayOutputStr ...

  2. Bypass D盾_IIS防火墙SQL注入防御(多姿势)

    0X01 前言 D盾_IIS防火墙,目前只支持Win2003服务器,前阵子看见官方博客说D盾新版将近期推出,相信功能会更强大,这边分享一下之前的SQL注入防御的测试情况.D盾_IIS防火墙注入防御策略 ...

  3. Cookie利用神器:CookieHacker

    转自evilcos的博客 看到那么多苦逼的跨站师在问Cookie利用工具,不忍心,还是把自己写的Chrome扩展开源出来吧,功能极简,仿造<我的渗透利器>里提到的Original Cook ...

  4. Android的Fragment中onActivityResult不被调用

    1.检查该Fragment所属的Activity中,是否重写了onActivityResult方法. 2.检查Fragment中的startActivityForResult的调用方式. 请确保不要使 ...

  5. CDN的那些细枝末节

    起源: 原本打算系统看看关于axios的介绍,无意中就看见一句"Using cdn",于是百度一下,"cdn"是什么? 名词解释:CDN CDN的全称是Cont ...

  6. JQuery选择器和DOM的操作-入门学习

    嘿嘿,今天学习了JQuery,前面的一周都在学习javascript,今天学习了JQuery,虽然javascript的类库有很多个,例如:Prototype,Dojo,JQuery等,javascr ...

  7. c++学习笔记—动态内存与智能指针浅析

    我们的程序使用内存包含以下几种: 静态内存用来保存局部static对象.类static数据成员以及定义在任何函数之外的变量,在使用之前分配,在程序结束时销毁. 栈内存用来保存定义在函数内部的非stat ...

  8. Android开发训练之第五章第四节——Syncing to the Cloud

    Syncing to the Cloud GET STARTED DEPENDENCIES AND PREREQUISITES Android 2.2 (API level 8) and higher ...

  9. jTemplates

    jTemplates是一个基于JQuery的模板引擎插件,功能强大,有了他你就再不用为使用JS绑定数据集时发愁了. 首先送上jTtemplates的官网地址:http://jtemplates.tpy ...

  10. Kafka usecase

    h1, h2, h3, h4, h5, h6, p, blockquote { margin: 5px; padding: 5; } body { font-family: "Helveti ...