ProBase
http://haixun.olidu.com/probase.html

A Data Driven Semantic Network for Text Understanding
Probase is a data driven semantic network that consists of millions of fine-grained concepts and their relationships. One of the goal of Probase is to enable generalization in natural language processing. One important application we have built using Probase is short text analysis (a.k.a. deep query understanding). Using the knowledge in Probase, we perform segmentation, build dependency tree, and annotate terms in a short text. This enables us to understand the intent of keyword based queries.
Below is a comprehensive list of Probase related publications. More (and a little outdated) info can be found here.
Talks
- Inferencing in Information Extraction: Techniques and Applications, ICDE 2015 Tutorial
- Knowledge Base for Text Understanding: Haixun Wang, Dec 2014.
- Learning Knowledge Bases for Text and Multimedia, Lexing Xie and Haixun Wang, Tutorial at ACM Multimedia, Nov 2014.
- Probase: A Review, Haixun Wang, Feb 2014.
- Short Text Understanding (invited talk), by Haixun Wang, in AKBC (Automated Knowledge Base Construction), 2013, San Francisco, USA.
- Understanding Short Texts (keynote), by Haixun Wang, in APWeb, 2013, Sydney, Australia.
Under Submission
- An Inference Approach to Basic Level of Categorization, by Zhongyuan Wang and Haixun Wang, Under Submission, 2015.
- On the Transitivity of isA Relations in Data-Driven Semantic Networks, by Jiaqing Liang, Haixun Wang, Yanghua Xiao, Under Submission, 2015
- Fine-grained Semantic Typing of FrameNet, by Seung-won Hwang, Haixun Wang, Under Submission, 2015
- Probase+: A Comprehensive Conceptual Taxonomy, by Jiaqing Liang, Yanghua Xiao, and Haixun Wang, Under Submission, 2015.
2015
- Learning Term Embeddings for Hypernymy Identification, by Yu Zheng, Haixun Wang, Xuemin Lin, and Min Wang, IJCAI 2015.
- Query Understanding through Knowledge-Based Conceptualization, by Zhongyuan Wang and Haixun Wang, IJCAI 2015
- On Conceptual Labeling of a Bag of Words, by Xiangyan Sun, Haixun Wang, Yanghua Xiao, IJCAI 2015
- Open Domain Short Text Conceptualization: A Generative + Descriptive Modeling Approach, by Yangqiu Song, Shusen Wang, Haixun Wang, IJCAI 2015
- Short Text Understanding Through Lexical-Semantic Analysis (Best Paper Award), by Wen Hua, Zhongyuan Wang, Haixun Wang, and Xiaofang Zhou, ICDE 2015.
- Automatic Taxonomy Construction from Keywords via Scalable Bayesian Rose Trees, by Xueqing Liu, Yangqiu Song, Shixia Liu, and Haixun Wang, TKDE, 2015.
2014
- Transfer Understanding from Head Queries to Tail Queries, by Yangqiu Song, Haixun Wang, Weizhu Chen, Shusen Wang, in CIKM, 2014, Shanghai, China.
- Concept-based Short Text Classification and Ranking, by Zhongyuan Wang, Fang Wang, Wen Ji-Rong, Zhoujun Li, in CIKM, 2014, Shanghai, China.
- Overcoming Semantic Drift in Information Extraction, by Zhixu Li, Hongsong Li, Haixun Wang, Yi Yang, Xiangliang Zhang, and Xiaofang Zhou, in EDBT, 2014, Athens, Greece.
- Data Driven Metaphor Recognition and Explanation, by Hongsong Li, Kenny Zhu, and Haixun Wang, in TACL, 2014.
- Head, Modifier, and Constraint Detection in Short Texts, by Zhongyuan Wang, Haixun Wang, and Zhirui Hu, in ICDE, 2014, Chicago, USA.
- Semantic Multidimensional Scaling for Open-Domain Sentiment Analysis, by Erik Cambria, Yangqiu Song, Haixun Wang, and Newton Howard, in IEEE Intelligent Systems, 2014.
2013
- Computing term similarity by large probabilistic isA knowledge, by Pei-Pei Li, Haixun Wang, Kenny Zhu, Zhongyuan Wang, and Xindong Wu, in CIKM, 2013, San Francisco, USA.
- Assessing sparse information extraction using semantic contexts, by Pei-Pei Li, Haixun Wang, Hongsong Li, and Xindong Wu, in CIKM, 2013, San Francisco, USA.
- Attribute extraction and scoring: A probabilistic approach, by Taesung Lee, Zhongyuan Wang, Haixun Wang, and Seung-won Hwang, in ICDE, 2013, Brisbane, Australia.
- Automatic extraction of top-k lists from the web, by Zhixian Zhang, Kenny Zhu, Haixun Wang, and Hongsong Li, in ICDE, 2013, Brisbane, Australia.
- Shallow Information Extraction for the knowledge Web (Tutorial), by Denilson Barbosa, Haixun Wang, and Cong Yu, in ICDE, 2013, Brisbane, Australia.
- Context-Dependent Conceptualization, by Dongwoo Kim, Haixun Wang, and Alice H. Oh, in IJCAI, 2013, Beijing, China.
- Identifying Users' Topical Tasks in Web Search, by Wen Hua, Yangqiu Song, Haixun Wang, and Xiaofang Zhou, in WSDM, 2013, Rome, Italy.
- Semantic multi-dimensional scaling for open-domain sentiment analysis, by Eric Cambria, Yangqiu Song, Haixun Wang, and N Howard, in IEEE Intelligent Systems, 2013.
2012
- A System for Extracting Top-K Lists from the Web (demo), by Zhixian Zhang, Kenny Zhu, and Haixun Wang, in SIGKDD, 2012, Beijing, China.
- Automatic Taxonomy Construction from Keywords, by Xueqing Liu, Yangqiu Song, Shixia Liu, and Haixun Wang, in SIGKDD, 2012, Beijing, China.
- Probase: A Probabilistic Taxonomy for Text Understanding, by Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Zhu, in ACM International Conference on Management of Data (SIGMOD), 2012, Arizona, USA.
- Optimizing Index for Taxonomy Keyword Search, by Bolin Ding, Haixun Wang, Ruomin Jin, Jiawei Han, and Zhongyuan Wang, in ACM International Conference on Management of Data (SIGMOD), 2012, Arizona, USA.
2011
- Web Scale Taxonomy Cleansing, by Taesung Lee, Zhongyuan Wang, Haixun Wang, and Seung-won Hwang, in 37th International Conference on Very Large Data Bases (VLDB), 2011
- Isanette: A common and common sense knowledge base for opinion mining, by Eric Cambria, Yangqiu Song, Haixun Wang, and A Hussain, in ICDM, 2011, Vancouver, Canada.
- Short Text Conceptualization using a Probabilistic Knowledgebase, by Yangqiu Song, Haixun Wang, Zhongyuan Wang, and Hongsong Li, in The 26th International Joint Conference on Artificial Intelligence (IJCAI), 2011, Spain.
ProBase的更多相关文章
- [python爬虫] Selenium定向爬取海量精美图片及搜索引擎杂谈
我自认为这是自己写过博客中一篇比较优秀的文章,同时也是在深夜凌晨2点满怀着激情和愉悦之心完成的.首先通过这篇文章,你能学到以下几点: 1.可以了解Python简单爬取图片的一些思路和方法 ...
- 追本溯源 解析“大数据生态环境”发展现状(CSDN)
程学旗先生是中科院计算所副总工.研究员.博士生导师.网络科学与技术重点实验室主任.本次程学旗带来了中国大数据生态系统的基础问题方面的内容分享.大数据的发展越来越快,但是对于大数据的认知大都还停留在最初 ...
- 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...
随机推荐
- 如何快速将Linux文件系统迁移到Azure存储
概述 前一段时间一直在给一个客户将原先搭载在Linux(客户使用的是CentOS 7.0)上的NFS快速迁移到Azure存储上,并且为了保证数据完整性还需要另开一个存储做冷备,架构图如下: 通过Cli ...
- spring-boot 速成(9) druid+mybatis 多数据源及读写分离的处理
按上节继续学习,稍微复杂的业务系统,一般会将数据库按业务拆开,比如产品系统的数据库放在product db中,订单系统的数据库放在order db中...,然后,如果量大了,可能每个库还要考虑做读.写 ...
- stm-ledstrip : Driver and test routine for WS2811 RGB-LED
stm-ledstrip : Driver and test routine for WS2811 RGB-LED #include "ws2812.h" #include < ...
- Dapper-translation 分布式监控系统
http://bigbully.github.io/Dapper-translation/ https://github.com/bigbully/Dapper-translation
- Unity3D脚本(MonoBehaviour)生命周期
场景中有2个物体:A,B 每一个物体上绑定2个脚本:A,B 初始化log: Object : A , Script : B , Message : Awake Object : A , Script ...
- AngularJS订阅API服务
本篇使用AngularJS实现订阅某个API服务. 首页大致是: 其中,what's on显示首页内容,Search通过输入关键词调用API服务显示到页面,MyShows显示订阅的内容. Sarch页 ...
- Android项目更换开发环境时出现的 java.lang.VerifyError 异常解决办法
from://http://blog.csdn.net/wudiwo/article/details/7548451 项目是从同事的电脑上直接拷贝过来的,项目里面的jar包是在项目跟下libs里面存放 ...
- Android 4.4 Kitkat Phone工作流程浅析(八)__Phone状态分析
本文来自http://blog.csdn.net/yihongyuelan 转载请务必注明出处 本文代码以MTK平台Android 4.4为分析对象.与Google原生AOSP有些许差异.请读者知悉. ...
- ios之归档demo
ios对自定义对象的归档.首先需要实现NSCoding与NSCopying接口 #import <Foundation/Foundation.h> @interface Person : ...
- IP地址和CIDR
IP地址(IPV4) IPV4的地址是一个32位的二进制数,由网络ID和主机ID两部分组成,用来在网络中唯一的标识一台计算机.IP地址通常用四组3位的十进制数表示,中间用.分割,例如:192.168. ...