Andrew Ng-ML-第八章-正则化
1.过度拟合overfitting

过度拟合,因为有太多的特征+过少的训练数据,学习到的假设可能很适应训练集,但是不能泛化到新的样例。即泛化generalize能力差。
解决办法:

1.手动/使用选择算法来确定保留的特征。
2.当所有的特征都对结果有一定贡献时,需要正则化,保留所有特征,但是降低θ的量级或者值。
2.正则化

在代价函数中加入惩罚项(正则化项),即对所有系数平方求和,乘上惩罚系数,这样就会降低各系数的量级,从而使分类模型形式更加简单,更简单的意思在这里可以理解为,像是预测房价的,如果多了三次项和四次项,但是通过加上惩罚项之后求出来的θ3和θ4就会很小,从而使曲线光滑趋近于二次曲线。
但是如果设置惩罚系数lamda过大的话,会出现所有的theta1,theta2......theta100,都会被小到忽略。
3.线性回归的正则化
在代价函数里加上了正则项,从而在递归下降求解时的公式也发生了改变,如下:

i表示第几个样本,j表示一个样本内的指标序号。
4.逻辑回归的正则化
逻辑回归梯度下降迭代时,即如图。
逻辑回归代价函数加上的惩罚项是lamda/2*m(Σtheta j ^2)。
Andrew Ng-ML-第八章-正则化的更多相关文章
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
- Andrew Ng机器学习课程11之贝叶斯统计和正则化
Andrew Ng机器学习课程11之贝叶斯统计和正则化 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 在统计学中有两个学派,一个是频率学派,另一个是贝叶斯学 ...
- 斯坦福大学Andrew Ng - 机器学习笔记(2) -- 逻辑回归 & 正则化
大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning
本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...
- matlab基础教程——根据Andrew Ng的machine learning整理
matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一 ...
- 机器学习笔记(一)- from Andrew Ng的教学视频
最近算是一段空闲期,不想荒废,记得之前有收藏一个机器学习的链接Andrew Ng的网易公开课,其中的overfiting部分做组会报告时涉及到了,这几天有时间决定把这部课程学完,好歹算是有个粗浅的认识 ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Logistic回归Cost函数和J(θ)的推导----Andrew Ng【machine learning】公开课
最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法 ...
随机推荐
- 决策树归纳算法之ID3
学习是一个循序渐进的过程,我们首先来认识一下,什么是决策树.顾名思义,决策树就是拿来对一个事物做决策,作判断.那如何判断呢?凭什么判断呢?都是值得我们去思考的问题. 请看以下两个简单例子: 第一个例子 ...
- 【转】C++可变参数列表处理宏va_list、va_start、va_end的使用
VA_LIST是在C语言中解决变参问题的一组宏他有这么几个成员: 1)va_list型变量: #ifdef _M_ALPHA typedef struct{ char* a0; /*po ...
- php curl-class post
use \Curl\Curl; $curl = new Curl();$curl->setHeader('Content-Type', 'application/json');$curl-> ...
- GTID与MHA
MHA 基于binlog文件位置的复制 * Phase 3: Master Recovery Phase.. * Phase 3.1: Getting Latest Slaves Phase.. La ...
- Clojure学习之比线性箭头操作
1. 单箭头( -> ) 单箭头操作符会把其参数form迭代式地依次插入到相邻的下个一个form中作为该form的第一个参数.这就好像把这些form串起来了,即线性化(Threading). 由 ...
- 让google.com不跳转到google.com.hk
自从google的服务器搬离中国大陆后,大陆地区用户用google服务时会自动跳转到香港的http://google.com.hk,,有关键字过滤而且偶尔不是很稳定,这对我们的生活工作都造成了困扰. ...
- javaAgent 参数
-javaagent 这个JVM参数是JDK 5引进的. Java -help的帮助里面写道: -javaagent:<jarpath>[=<options>] load Ja ...
- 【BZOJ3456】城市规划 多项式求逆
[BZOJ3456]城市规划 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得 ...
- 【CF887E】Little Brother 二分+几何
[CF887E]Little Brother 题意:给你n个圆和一条线段,保证圆和圆.圆和线段所在直线不相交,不相切,不包含.求一个过线段两端点的圆,满足不和任何圆相交(可以相切.包含).问圆的最小半 ...
- iOS自带分享
NSArray *activityItems; if (self.sharingImage != nil) { activityItems = @[self.sharingText, self.sha ...