1.过度拟合overfitting

过度拟合,因为有太多的特征+过少的训练数据,学习到的假设可能很适应训练集,但是不能泛化到新的样例。即泛化generalize能力差。

解决办法:

1.手动/使用选择算法来确定保留的特征。

2.当所有的特征都对结果有一定贡献时,需要正则化,保留所有特征,但是降低θ的量级或者值。

2.正则化

在代价函数中加入惩罚项(正则化项),即对所有系数平方求和,乘上惩罚系数,这样就会降低各系数的量级,从而使分类模型形式更加简单,更简单的意思在这里可以理解为,像是预测房价的,如果多了三次项和四次项,但是通过加上惩罚项之后求出来的θ3和θ4就会很小,从而使曲线光滑趋近于二次曲线。

但是如果设置惩罚系数lamda过大的话,会出现所有的theta1,theta2......theta100,都会被小到忽略。

3.线性回归的正则化

在代价函数里加上了正则项,从而在递归下降求解时的公式也发生了改变,如下:

i表示第几个样本,j表示一个样本内的指标序号。

4.逻辑回归的正则化

逻辑回归梯度下降迭代时,即如图。

逻辑回归代价函数加上的惩罚项是lamda/2*m(Σtheta j ^2)。

Andrew Ng-ML-第八章-正则化的更多相关文章

  1. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  2. Andrew Ng机器学习课程11之贝叶斯统计和正则化

    Andrew Ng机器学习课程11之贝叶斯统计和正则化 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 在统计学中有两个学派,一个是频率学派,另一个是贝叶斯学 ...

  3. 斯坦福大学Andrew Ng - 机器学习笔记(2) -- 逻辑回归 & 正则化

    大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深 ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning

    本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...

  6. matlab基础教程——根据Andrew Ng的machine learning整理

    matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一 ...

  7. 机器学习笔记(一)- from Andrew Ng的教学视频

    最近算是一段空闲期,不想荒废,记得之前有收藏一个机器学习的链接Andrew Ng的网易公开课,其中的overfiting部分做组会报告时涉及到了,这几天有时间决定把这部课程学完,好歹算是有个粗浅的认识 ...

  8. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  9. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  10. Logistic回归Cost函数和J(θ)的推导----Andrew Ng【machine learning】公开课

    最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法 ...

随机推荐

  1. Delphi应用程序的调试(一)

    集成式调试器是Delphi IDE的一个重要特性.该调试器使用户能方便地设置断点.监视变量.检查对象等等.在运行程序时,使用该调试器能快速查找出程序发生了什么(或未发生什么).一个号的调试器对程序开发 ...

  2. css笔记 - 张鑫旭css课程笔记之 margin 篇

    margin - 人若犯我,我必犯人! [margin地址](https://www.imooc.com/learn/680) 一.margin与容器尺寸的关系 relative可定位,但是不改变容器 ...

  3. path 与classpath针对JAVA来说

    Path 路径,是java编译时需要调用的程序(如java,javac等)所在的地方CLASSPATH 类的路径,在编译运行java程序时,如果有调用到其他类的时候,在classpath中寻找需要的类 ...

  4. python tkinter教程-事件绑定

    一个Tkinter主要跑在mainloop进程里.Events可能来自多个地方,比如按键,鼠标,或是系统事件. Tkinter提供了丰富的方法来处理这些事件.对于每一个控件Widget,你都可以为其绑 ...

  5. 如何清除 DBA_DATAPUMP_JOBS 视图中的异常数据泵作业

    解决方案 用于这个例子中的作业: - 导出作业 SCOTT.EXPDP_20051121 是一个正在运行的 schema 级别的导出作业 - 导出作业 SCOTT.SYS_EXPORT_TABLE_0 ...

  6. Big Spatio temporal Data(R-tree Index and NN & RNN & Skyline)

    一.简单介绍大数据技术产物 “大数据”一词首先出现在2008年9月<Nature>杂志发表的一篇名为“Big Data: Wikiomics”的文章上(Mitch,2008).“大数据科学 ...

  7. HDU 4004 The Frog's Games(二分答案)

    The Frog's Games Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) ...

  8. 用Android Studio导出jar给Unity3D用

    1.新建一个Android Studio工程,选择空Activity 2.创建一个Module 3.将Unity的依赖jar包拷贝到工程的libs下 4.增加Java代码 内容修改如下 package ...

  9. Java虚拟机九 java.lang.String在虚拟机中的实现

    在Java中,Java的设计者对String对象进行了大量的优化,主要有三个特点: 1.不变性: 不变性是指String对象一旦生成,则不能再对它进行改变.String的这个特点可以泛化成不变(imm ...

  10. Java虚拟机六 堆溢出的处理

    在Java程序中,如果堆空间不足,有可能抛出内存溢出错误:Out Of Memory,简称OOM. Exception in thread "main" java.lang.Out ...