Spark Storage(一) 集群下的区块管理
Storage模块
在Spark中提及最多的是RDD,而RDD所交互的数据是通过Storage来实现和管理
Storage模块整体架构
1. 存储层
2. 集群下的架构
2.1 架构
- Master : 拥有所有block的具体信息(本地和Slave节点)
- Slave : 通过master获取block的信息,并且汇报自己的信息
for (pid <- Random.shuffle(Seq.range(, numBlocks))) {
val pieceId = BroadcastBlockId(id, "piece" + pid)
logDebug(s"Reading piece $pieceId of $broadcastId")
// First try getLocalBytes because there is a chance that previous attempts to fetch the
// broadcast blocks have already fetched some of the blocks. In that case, some blocks
// would be available locally (on this executor).
bm.getLocalBytes(pieceId) match {
case Some(block) =>
blocks(pid) = block
releaseLock(pieceId)
case None =>
bm.getRemoteBytes(pieceId) match {
case Some(b) =>
if (checksumEnabled) {
val sum = calcChecksum(b.chunks())
if (sum != checksums(pid)) {
throw new SparkException(s"corrupt remote block $pieceId of $broadcastId:" +
s" $sum != ${checksums(pid)}")
}
}
// We found the block from remote executors/driver's BlockManager, so put the block
// in this executor's BlockManager.
if (!bm.putBytes(pieceId, b, StorageLevel.MEMORY_AND_DISK_SER, tellMaster = true)) {
throw new SparkException(
s"Failed to store $pieceId of $broadcastId in local BlockManager")
}
blocks(pid) = b
case None =>
throw new SparkException(s"Failed to get $pieceId of $broadcastId")
}
}
}
2.2 Executor获取块内容的位置
唯一的blockID:
请求Master获取该BlockID所在的 Location,也就是BlockManagerId的集合
/** Get locations of the blockId from the driver */
def getLocations(blockId: BlockId): Seq[BlockManagerId] = {
driverEndpoint.askWithRetry[Seq[BlockManagerId]](GetLocations(blockId))
}
BlockManagerId(driver, 192.168.121.101, 55153, None)
Executor ID, executor ID, 对driver来说就是driver
2.3 Executor获取块的内容
def getRemoteBytes(blockId: BlockId): Option[ChunkedByteBuffer] = {
logDebug(s"Getting remote block $blockId")
require(blockId != null, "BlockId is null")
var runningFailureCount =
var totalFailureCount =
val locations = getLocations(blockId)
val maxFetchFailures = locations.size
var locationIterator = locations.iterator
while (locationIterator.hasNext) {
val loc = locationIterator.next()
logDebug(s"Getting remote block $blockId from $loc")
val data = try {
blockTransferService.fetchBlockSync(
loc.host, loc.port, loc.executorId, blockId.toString).nioByteBuffer()
} catch {
case NonFatal(e) =>
runningFailureCount +=
totalFailureCount += if (totalFailureCount >= maxFetchFailures) {
// Give up trying anymore locations. Either we've tried all of the original locations,
// or we've refreshed the list of locations from the master, and have still
// hit failures after trying locations from the refreshed list.
logWarning(s"Failed to fetch block after $totalFailureCount fetch failures. " +
s"Most recent failure cause:", e)
return None
} logWarning(s"Failed to fetch remote block $blockId " +
s"from $loc (failed attempt $runningFailureCount)", e) // If there is a large number of executors then locations list can contain a
// large number of stale entries causing a large number of retries that may
// take a significant amount of time. To get rid of these stale entries
// we refresh the block locations after a certain number of fetch failures
if (runningFailureCount >= maxFailuresBeforeLocationRefresh) {
locationIterator = getLocations(blockId).iterator
logDebug(s"Refreshed locations from the driver " +
s"after ${runningFailureCount} fetch failures.")
runningFailureCount =
} // This location failed, so we retry fetch from a different one by returning null here
null
} if (data != null) {
return Some(new ChunkedByteBuffer(data))
}
logDebug(s"The value of block $blockId is null")
}
logDebug(s"Block $blockId not found")
None
}
通过获取的BlockManagerId的集合列表,顺序的从列表中取出一个拥有该Block的服务器,通过
blockTransferService.fetchBlockSync(
loc.host, loc.port, loc.executorId, blockId.toString).nioByteBuffer()
2.4 BlockManager注册
val idFromMaster = master.registerBlockManager(
id,
maxMemory,
slaveEndpoint)
会通过master 注册BlockManager
def registerBlockManager(
blockManagerId: BlockManagerId,
maxMemSize: Long,
slaveEndpoint: RpcEndpointRef): BlockManagerId = {
logInfo(s"Registering BlockManager $blockManagerId")
val updatedId = driverEndpoint.askWithRetry[BlockManagerId](
RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint))
logInfo(s"Registered BlockManager $updatedId")
updatedId
}
2.5 Driver Master的endpoint
val blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(
BlockManagerMaster.DRIVER_ENDPOINT_NAME,
new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),
conf, isDriver)
注册一个lookup的endpoint
def registerOrLookupEndpoint(
name: String, endpointCreator: => RpcEndpoint):
RpcEndpointRef = {
if (isDriver) {
logInfo("Registering " + name)
rpcEnv.setupEndpoint(name, endpointCreator)
} else {
RpcUtils.makeDriverRef(name, conf, rpcEnv)
}
}
代码中可以看到只有isDriver的时候才会setup一个rpc的endpoint,默认是netty的rpc环境,命名为:BlockManagerMaster
spark://BlockManagerMaster@192.168.121.101:40978
2.6 Master和Executor消息格式
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint) =>
context.reply(register(blockManagerId, maxMemSize, slaveEndpoint)) case _updateBlockInfo @
UpdateBlockInfo(blockManagerId, blockId, storageLevel, deserializedSize, size) =>
context.reply(updateBlockInfo(blockManagerId, blockId, storageLevel, deserializedSize, size))
listenerBus.post(SparkListenerBlockUpdated(BlockUpdatedInfo(_updateBlockInfo))) case GetLocations(blockId) =>
context.reply(getLocations(blockId)) case GetLocationsMultipleBlockIds(blockIds) =>
context.reply(getLocationsMultipleBlockIds(blockIds)) case GetPeers(blockManagerId) =>
context.reply(getPeers(blockManagerId)) case GetExecutorEndpointRef(executorId) =>
context.reply(getExecutorEndpointRef(executorId)) case GetMemoryStatus =>
context.reply(memoryStatus) case GetStorageStatus =>
context.reply(storageStatus) case GetBlockStatus(blockId, askSlaves) =>
context.reply(blockStatus(blockId, askSlaves)) case GetMatchingBlockIds(filter, askSlaves) =>
context.reply(getMatchingBlockIds(filter, askSlaves)) case RemoveRdd(rddId) =>
context.reply(removeRdd(rddId)) case RemoveShuffle(shuffleId) =>
context.reply(removeShuffle(shuffleId)) case RemoveBroadcast(broadcastId, removeFromDriver) =>
context.reply(removeBroadcast(broadcastId, removeFromDriver)) case RemoveBlock(blockId) =>
removeBlockFromWorkers(blockId)
context.reply(true) case RemoveExecutor(execId) =>
removeExecutor(execId)
context.reply(true) case StopBlockManagerMaster =>
context.reply(true)
stop() case BlockManagerHeartbeat(blockManagerId) =>
context.reply(heartbeatReceived(blockManagerId)) case HasCachedBlocks(executorId) =>
blockManagerIdByExecutor.get(executorId) match {
case Some(bm) =>
if (blockManagerInfo.contains(bm)) {
val bmInfo = blockManagerInfo(bm)
context.reply(bmInfo.cachedBlocks.nonEmpty)
} else {
context.reply(false)
}
case None => context.reply(false)
}
}
2.7 Master结构关系
Spark Storage(一) 集群下的区块管理的更多相关文章
- spark高可用集群搭建及运行测试
文中的所有操作都是在之前的文章spark集群的搭建基础上建立的,重复操作已经简写: 之前的配置中使用了master01.slave01.slave02.slave03: 本篇文章还要添加master0 ...
- Spark高可用集群搭建
Spark高可用集群搭建 node1 node2 node3 1.node1修改spark-env.sh,注释掉hadoop(就不用开启Hadoop集群了),添加如下语句 export ...
- Spark on Yarn 集群运行要点
实验版本:spark-1.6.0-bin-hadoop2.6 本次实验主要是想在已有的Hadoop集群上使用Spark,无需过多配置 1.下载&解压到一台使用spark的机器上即可 2.修改配 ...
- 搭建Spark高可用集群
Spark简介 官网地址:http://spark.apache.org/ Apache Spark™是用于大规模数据处理的统一分析引擎. 从右侧最后一条新闻看,Spark也用于AI人工智能 sp ...
- spark教程(一)-集群搭建
spark 简介 建议先阅读我的博客 大数据基础架构 spark 一个通用的计算引擎,专门为大规模数据处理而设计,与 mapreduce 类似,不同的是,mapreduce 把中间结果 写入 hdfs ...
- 用redis实现TOMCAT集群下的session共享
上篇实现了 LINUX中NGINX反向代理下的TOMCAT集群(http://www.cnblogs.com/yuanjava/p/6850764.html) 这次我们在上篇的基础上实现session ...
- redis入门(14)redis集群下的数据分区存储
redis入门(10)redis集群下的数据分区存储
- Java应用集群下的定时任务处理方案(mysql)
Java应用集群下的定时任务处理方案(mysql) 因为自己有csdn和博客园两个博客, 所以两边都会发一下. csdn地址: http://blog.csdn.net/u012881584/ar ...
- was集群下基于接口分布式架构和开发经验谈
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/luozhonghua2014/article/details/34084935 某b项目是我首 ...
随机推荐
- 【python3】 django2.0 在生成数据库表时报错: TypeError: __init__() missing 1 required positional argument: 'on_delete'
python: 3.6.4 django: 2.0 models.py 代码如下 # coding: utf-8 from django.db import models from django.co ...
- 数组和字符串的基础题目学习(EPI)
学习的速度有些慢,脑袋转动的频率有些不是很高.不过今天的效率我觉得还是可以,应该不能称效率吧,就是整个感觉不错,感觉自己补充了很多的知识.其实G家和F家败了之后不知道看看算法题对接下来的找工作帮助是否 ...
- 如何查看Mac电脑的处理器核心数目-CPU的核心数目
1.通过点击关于本机来查看
- Egret动态设置按钮的图片
参考: 动态设置Button按钮的状态图片 按钮有3个状态,up down disabled.这里区别于source,source.down,source.disabled,而是每个状态单独一个ima ...
- HTML5 Canvas 画纸飞机组件
纸飞机模拟一个物体在规定设计轴线偏离方位. //三角形 function DrawTriangle(canvas, A, B, C) { //画个三角形,“A.B.C”是顶点 with (canvas ...
- SQL Server2008 R2 安装失败后的解决办法
当你第一次安装SQL Server2005,SQL Server2008,SQL Server2012失败后,第二次重新安装一般还是容易安装失败,原因就是你没有完全卸载,还存留残留文件和注册表. 我安 ...
- yii---解决post请求出现500错误
在使用yii框架的时候,在发送数据请求的时候,POST请求会出现500错误,这是因为yii2开启了防御csrf的攻击机制,可去先去掉,在控制器里去掉:public $enableCsrfValidat ...
- Hive desc
Describe Database hive> DESCRIBE DATABASE test; test ??? hdfs://ns1/user/hive/warehouse/test.db w ...
- 7.18python进程池
主要方法 常用的就是 from multiprocessing import Pool map() 同步 apply() 同步 apply_async() 异步 手动 close() jo ...
- POJ-1887 Testing the CATCHER(dp,最长下降子序列)
Testing the CATCHER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16515 Accepted: 6082 ...