《Densely Connected Convolutional Networks》阅读笔记

代码地址:https://github.com/liuzhuang13/DenseNet
首先看一张图:

稠密连接:每层以之前层的输出为输入,对于有L层的传统网络,一共有L个连接,对于DenseNet,则有L(L+1)2。

这篇论文主要参考了Highway Networks,Residual Networks (ResNets)以及GoogLeNet,通过加深网络结构,提升分类结果。加深网络结构首先需要解决的是梯度消失问题,解决方案是:尽量缩短前层和后层之间的连接。比如上图中,H4层可以直接用到原始输入信息X0,同时还用到了之前层对X0处理后的信息,这样能够最大化信息的流动。反向传播过程中,X0的梯度信息包含了损失函数直接对X0的导数,有利于梯度传播。
DenseNet有如下优点:
1.有效解决梯度消失问题
2.强化特征传播
3.支持特征重用
4.大幅度减少参数数量

接着说下论文中一直提到的Identity function:
很简单 就是输出等于输入f(x)=x

传统的前馈网络结构可以看成处理网络状态(特征图?)的算法,状态从层之间传递,每个层从之前层读入状态,然后写入之后层,可能会改变状态,也会保持传递不变的信息。ResNet是通过Identity transformations来明确传递这种不变信息。

网络结构:

每层实现了一组非线性变换Hl(.),可以是Batch Normalization (BN) ,rectified linear units (ReLU) , Pooling , or Convolution (Conv). 第l层的输出为xl。
对于ResNet:

xl=Hl(xl−1)+xl−1

这样做的好处是the gradient flows directly through the identity function from later layers to the earlier layers.
同时呢,由于identity function 和 H的输出通过相加的方式结合,会妨碍信息在整个网络的传播。
受GooLeNet的启发,DenseNet通过串联的方式结合:

xl=Hl([x0,x1,...,xl−1])
这里Hl(.)是一个Composite function,是三个操作的组合:BN−>ReLU−>Conv(3×3)
由于串联操作要求特征图x0,x1,...,xl−1大小一致,而Pooling操作会改变特征图的大小,又不可或缺,于是就有了上图中的分块想法,其实这个想法类似于VGG模型中的“卷积栈”的做法。论文中称每个块为DenseBlock。每个DenseBlock的之间层称为transition layers,由BN−>Conv(1×1)−>averagePooling(2×2)组成。

Growth rate:由于每个层的输入是所有之前层输出的连接,因此每个层的输出不需要像传统网络一样多。这里Hl(.)的输出的特征图的数量都为k,k即为Growth Rate,用来控制网络的“宽度”(特征图的通道数).比如说第l层有k(l−1)+k0的输入特征图,k0是输入图片的通道数。

虽然说每个层只产生k个输出,但是后面层的输入依然会很多,因此引入了Bottleneck layers 。本质上是引入1x1的卷积层来减少输入的数量,Hl的具体表示如下

BN−>ReLU−>Conv(1×1)−>BN−>ReLU−>Conv(3×3)

文中将带有Bottleneck layers的网络结构称为DenseNet-B。
除了在DenseBlock内部减少特征图的数量,还可以在transition layers中来进一步Compression。如果一个DenseNet有m个特征图的输出,则transition layer产生 ⌊θm⌋个输出,其中0<θ≤1。对于含有该操作的网络结构称为DenseNet-C。

同时包含Bottleneck layer和Compression的网络结构为DenseNet-BC。
具体的网络结构:

实验以及一些结论
在CIFAR和SVHN上的分类结果(错误率):

L表示网络深度,k为增长率。蓝色字体表示最优结果,+表示对原数据库进行data augmentation。可以发现DenseNet相比ResNet可以取得更低的错误率,并且使用了更少的参数。
接着看一组对比图:

前两组描述分类错误率与参数量的对比,从第二幅可以看出,在取得相同分类精度的情况下,DenseNet-BC比ResNet少了23的参数。第三幅图描述含有10M参数的1001层的ResNet与只有0.8M的100层的DenseNet的训练曲线图。可以发现ResNet可以收敛到更小的loss值,但是最终的test error与DenseNet相差无几。再次说明了DenseNet参数效率(Parameter Efficiency)很高!

同样的在ImageNet上的分类结果:

右图使用FLOPS来说明计算量。通过比较ResNet-50,DenseNet-201,ResNet-101,说明计算量方面,DenseNet结果更好。

转至:http://blog.csdn.net/u012938704/article/details/53468483

论文笔记——DenseNet的更多相关文章

  1. 论文笔记:CNN经典结构2(WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet)

    前言 在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构.本文主要讲解2016-2017年的一些经典CNN结构. CIFAR和SVHN上,DenseNet-BC优于ResN ...

  2. 论文笔记系列-Neural Network Search :A Survey

    论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...

  3. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  4. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  5. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  6. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  7. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  8. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  9. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

随机推荐

  1. 集成RabbitMQ做秒杀

    由于秒杀的并发量太大,所以仅仅使用缓存是不够的,还需要用到RabbitMQ. 这里推荐一款用于分库分表的中间件:mycat 解决超卖的问题(看第五章节): 秒杀接口优化: 实操: 然后把下载好的文件上 ...

  2. 2.深度学习中的batch_size的理解

    Batch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开. 首先,为什么需要有 Batch_Size 这个参数? Batch 的选择,首先决定的是下降的方向.如果数据集比较小 ...

  3. 智能指针 - 现代C++新特性总结

    C++98中的智能指针通过一个模板类auto_ptr来实现,new操作符返回的指针可以交由它来管理,程序员不用再显式的调用delete,这在一定程度上避免了堆内存忘记释放的问题:不过auto_ptr有 ...

  4. Scala系统学习(四):Scala数据类型

    Scala与Java具有相同的数据类型,具有相同的内存占用和精度.以下是提供Scala中可用的所有数据类型的详细信息的表格: 序号 数据类型 说明 1 Byte 8位有符号值,范围从-128至127 ...

  5. weka数据挖掘拾遗(二)---- 特征选择(IG、chi-square)

    一.说明 IG是information gain 的缩写,中文名称是信息增益,是选择特征的一个很有效的方法(特别是在使用svm分类时).这里不做详细介绍,有兴趣的可以googling一下. chi-s ...

  6. 查询set、dict、dict.keys()的速度对比

    查找效率:set>dict>list 单次查询中: list set dict O(n) set做了去重,本质应该一颗红黑树 (猜测,STL就是红黑树),复杂度 O(logn): dict ...

  7. Lintcode: Find Peak Element

    There is an integer array which has the following features: * The numbers in adjacent positions are ...

  8. Django初级手册3-视图层与URL配置

    设计哲学 在Django中一个视图有指定函数和指定模版组成.对于某些特定的应用应该分成若干视图.例如博客系统 Blog主页面 详细页面入口 基于年的页面展示 基于月的页面展示 基于天的页面展示 评论行 ...

  9. Servlet—文件上传

    什么是Commons? Apache的一个开源子项目,Commons-FileUpload是 Conmmons下子项目. Commons-FileUpload的作用? 1:该组件可以方便地嵌入JSP页 ...

  10. SV中的线程

    SV中线程之间的通信可以让验证组件之间更好的传递transaction. SV对verilog建模方式的扩展:1) fork.....join 必须等到块内的所有线程都执行结束后,才能继续执行块后的语 ...