标题也许叫整除分块吧

求\(1\)到\(n\)因数的个数\(\sum_{i=1}^n(\sum_{d|n}1)\)

范围\(1e14\)时限3s

\(n\sqrt{n}\)的暴力铁定gg

分开考虑

\(1\)到\(n\)中含有\(1\)因数的个数有\(n/1\)个

含有2因数的个数有\(n/2\)个**

······

含有n因数的个数有\(n/n\)个

问题就转化为求\(\sum_{i=1}^{n}[\frac{n}{i}]\)

然后我们就可以把\(O(n\sqrt{n})\)的暴力转化为\(O(n)\)了

可还是过不了&1e14的数据&

我们发现,我们求得\(\frac{n}{i}\)在一段区间内是连续的

而且呈现单调递减,这样我们就可以开心的套用二分啦

那到底有多少段连续的区间

把i分开考虑

1到\(\sqrt{n}\)之内,if都不同撑死有\(\sqrt{n}\)段

\(\sqrt{n}\)到n之内,求\(\frac{n}{i}\)连续的一段,取值范围为1到\(\sqrt{n}\)之内,撑死也有\(\sqrt{n}\)个

区间个数是\(\sqrt{n}\)级别的,二分是\(log\)级别的

所以复杂度为\(O(\sqrt{n}logn)\)

一直以为这是根号的%>_<%

参见牛客练习赛25(1e9)

#include <bits/stdc++.h>
using namespace std;
long long ans;
int l,n;
int main() {
int q;
cin>>q;
while(q--) {
cin>>n;
l=1;
ans=0;
for(int i=1; i<=n; ++i) {
int r=n;
int mid=(l+r)>>1;
while(n/l!=n/r) {
mid=(l+r)>>1;
r=mid;
}
ans+=n/l*(r-l+1);
if(r==n) break;
l=r+1;
}
cout<<ans<<"\n";
}
return 0;
}

直到我遇到了这个题luogu3935以及评测80sTLE的惨痛

才发现我是个zz诶

\(i\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(n/i\) \(12\) \(6\) \(4\) \(3\) \(2\) \(2\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)

当我们知道\(l\)的时候,也就是一段的开头,如何快速找到我们要的r呢

\(n/l\)是\(n\)中含有\(t=n/l\)块完整的\(l\)

那么\(n/t\)便是有\(t\)块最大的数,便是我们要求的\(r\)

所以\(r=n/(n/l)\)

所以我们求块的时间由二分的\(O(logn)\)变为了\(O(1)\)

复杂度为\(O(\sqrt{n})\)

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod=998244353;
ll solve(ll n)
{
ll ans=0;
for(ll l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
ans+=(r-l+1)%mod*(n/l)%mod;
ans%=mod;
}
return ans;
}
int main()
{
ll x,y;
cin>>x>>y;
cout<<((solve(y)-solve(x-1))%mod+mod)%mod;
return 0;
}

http://www.cnblogs.com/1000Suns/p/9193713.html

luogu3935 Calculating的更多相关文章

  1. 长时间停留在calculating requirements and dependencies 解决方案

    如果Eclipse花费了很长的时间calculating requirements and dependencies(计算需求和依赖性 ) 这个问题通常就是在点击安装之后显示“Calculating ...

  2. 长时间停留在calculating requirements and dependencies 的解决方案

    如果Eclipse花费了很长的时间calculating requirements and dependencies(计算需求和依赖性 ) 这个问题通常就是在点击安装之后显示“Calculating ...

  3. Calculating Stereo Pairs

    Calculating Stereo Pairs Written by Paul BourkeJuly 1999 Introduction The following discusses comput ...

  4. Calculating simple running totals in SQL Server

    Running total for Oracle: SELECT somedate, somevalue,SUM(somevalue) OVER(ORDER BY somedate ROWS BETW ...

  5. Codeforces Round #277 (Div. 2) A. Calculating Function 水题

    A. Calculating Function Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/4 ...

  6. cf486A Calculating Function

    A. Calculating Function time limit per test 1 second memory limit per test 256 megabytes input stand ...

  7. Android ADT安装时卡在Calculating requirements and dependencies

    AndroidSDK及Eclipse安装都很顺利,但是在Eclipse下安装ADT插件时,先采用点击Help->installnew software->Add...,无论输入https: ...

  8. 长时间停留在calculating requirements and dependencies

    如果安装插件的时候,Eclipse花费了很长的时间calculating requirements and dependencies(计算需求和依赖性 )这个问题通常就是在点击安装之后显示“Calcu ...

  9. 洛谷P3935 Calculating (莫比乌斯反演)

    P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...

随机推荐

  1. jquery ajax contentType设置

    默认get方法没有contentType,post方法的contentType为:application/x-www-form-urlencoded; charset=UTF-8 (1) 设置成app ...

  2. 【python基础】字符串格式化(% VS format)

    字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存. 1.百分号方式 ...

  3. vmware 安装 kali linux 系统到U盘 启动错误(initramfs:) 修复方法

    安装kalilinux到U盘 启动之后出现这个错误: 这是grub路径不对. 解决办法: 在这模式下可以输入命令:blkid 查看所列举出的磁盘 找到你的U盘系统 TYPE="ext4&qu ...

  4. Unity无法创建新工程

    1.解决方法 重新登录一遍账号

  5. Kylin安装问题--/home/hadoop-2.5.1/contrib/capacity-scheduler/.jar (No such file or directory)

    WARNING: Failed to process JAR [jar:file:/home/hadoop-2.5.1/contrib/capacity-scheduler/.jar!/] for T ...

  6. 实习培训——Servlet(5)

    实习培训——Servlet(5) 1  Servlet 简介 Servlet 是什么? Java Servlet 是运行在 Web 服务器或应用服务器上的程序,它是作为来自 Web 浏览器或其他 HT ...

  7. jmeter 测试websocket接口(二)

    1.到https://github.com/maciejzaleski/JMeter-WebSocketSampler下载Jmeter的WebSocket协议的支持插件:JMeterWebSocket ...

  8. Django中的admin组件分析

    admin的使用介绍 django-admin的使用 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.可以在项目的 setting ...

  9. Quick Look at the Air Jordan 32

    A color with 25 years of history in the Air Jordan line will once again leave its mark on the Air Jo ...

  10. 圆锥体完全均衡下重力异常正演 [MATLAB]

    在完全均衡的模型下,若地表有一圆锥体(山峰等),计算跨越山顶的截面上所得到的各种重力异常. 地壳密度 $kg\cdot m^{-3}$ 上地幔密度 $g\cdot cm^{-3}$ 地表地形圆锥体半径 ...