luogu3935 Calculating
标题也许叫整除分块吧
求\(1\)到\(n\)因数的个数\(\sum_{i=1}^n(\sum_{d|n}1)\)
范围\(1e14\)时限3s
\(n\sqrt{n}\)的暴力铁定gg
分开考虑
\(1\)到\(n\)中含有\(1\)因数的个数有\(n/1\)个
含有2因数的个数有\(n/2\)个**
······
含有n因数的个数有\(n/n\)个
问题就转化为求\(\sum_{i=1}^{n}[\frac{n}{i}]\)
然后我们就可以把\(O(n\sqrt{n})\)的暴力转化为\(O(n)\)了
可还是过不了&1e14的数据&
我们发现,我们求得\(\frac{n}{i}\)在一段区间内是连续的
而且呈现单调递减,这样我们就可以开心的套用二分啦
那到底有多少段连续的区间
把i分开考虑
1到\(\sqrt{n}\)之内,if都不同撑死有\(\sqrt{n}\)段
\(\sqrt{n}\)到n之内,求\(\frac{n}{i}\)连续的一段,取值范围为1到\(\sqrt{n}\)之内,撑死也有\(\sqrt{n}\)个
区间个数是\(\sqrt{n}\)级别的,二分是\(log\)级别的
所以复杂度为\(O(\sqrt{n}logn)\)
一直以为这是根号的%>_<%
参见牛客练习赛25(1e9)
#include <bits/stdc++.h>
using namespace std;
long long ans;
int l,n;
int main() {
int q;
cin>>q;
while(q--) {
cin>>n;
l=1;
ans=0;
for(int i=1; i<=n; ++i) {
int r=n;
int mid=(l+r)>>1;
while(n/l!=n/r) {
mid=(l+r)>>1;
r=mid;
}
ans+=n/l*(r-l+1);
if(r==n) break;
l=r+1;
}
cout<<ans<<"\n";
}
return 0;
}
直到我遇到了这个题luogu3935以及评测80sTLE的惨痛
才发现我是个zz诶
| \(i\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(n/i\) | \(12\) | \(6\) | \(4\) | \(3\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
当我们知道\(l\)的时候,也就是一段的开头,如何快速找到我们要的r呢
\(n/l\)是\(n\)中含有\(t=n/l\)块完整的\(l\)
那么\(n/t\)便是有\(t\)块最大的数,便是我们要求的\(r\)
所以\(r=n/(n/l)\)
所以我们求块的时间由二分的\(O(logn)\)变为了\(O(1)\)
复杂度为\(O(\sqrt{n})\)
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod=998244353;
ll solve(ll n)
{
ll ans=0;
for(ll l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
ans+=(r-l+1)%mod*(n/l)%mod;
ans%=mod;
}
return ans;
}
int main()
{
ll x,y;
cin>>x>>y;
cout<<((solve(y)-solve(x-1))%mod+mod)%mod;
return 0;
}
http://www.cnblogs.com/1000Suns/p/9193713.html
luogu3935 Calculating的更多相关文章
- 长时间停留在calculating requirements and dependencies 解决方案
如果Eclipse花费了很长的时间calculating requirements and dependencies(计算需求和依赖性 ) 这个问题通常就是在点击安装之后显示“Calculating ...
- 长时间停留在calculating requirements and dependencies 的解决方案
如果Eclipse花费了很长的时间calculating requirements and dependencies(计算需求和依赖性 ) 这个问题通常就是在点击安装之后显示“Calculating ...
- Calculating Stereo Pairs
Calculating Stereo Pairs Written by Paul BourkeJuly 1999 Introduction The following discusses comput ...
- Calculating simple running totals in SQL Server
Running total for Oracle: SELECT somedate, somevalue,SUM(somevalue) OVER(ORDER BY somedate ROWS BETW ...
- Codeforces Round #277 (Div. 2) A. Calculating Function 水题
A. Calculating Function Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/4 ...
- cf486A Calculating Function
A. Calculating Function time limit per test 1 second memory limit per test 256 megabytes input stand ...
- Android ADT安装时卡在Calculating requirements and dependencies
AndroidSDK及Eclipse安装都很顺利,但是在Eclipse下安装ADT插件时,先采用点击Help->installnew software->Add...,无论输入https: ...
- 长时间停留在calculating requirements and dependencies
如果安装插件的时候,Eclipse花费了很长的时间calculating requirements and dependencies(计算需求和依赖性 )这个问题通常就是在点击安装之后显示“Calcu ...
- 洛谷P3935 Calculating (莫比乌斯反演)
P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...
随机推荐
- jquery ajax contentType设置
默认get方法没有contentType,post方法的contentType为:application/x-www-form-urlencoded; charset=UTF-8 (1) 设置成app ...
- 【python基础】字符串格式化(% VS format)
字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存. 1.百分号方式 ...
- vmware 安装 kali linux 系统到U盘 启动错误(initramfs:) 修复方法
安装kalilinux到U盘 启动之后出现这个错误: 这是grub路径不对. 解决办法: 在这模式下可以输入命令:blkid 查看所列举出的磁盘 找到你的U盘系统 TYPE="ext4&qu ...
- Unity无法创建新工程
1.解决方法 重新登录一遍账号
- Kylin安装问题--/home/hadoop-2.5.1/contrib/capacity-scheduler/.jar (No such file or directory)
WARNING: Failed to process JAR [jar:file:/home/hadoop-2.5.1/contrib/capacity-scheduler/.jar!/] for T ...
- 实习培训——Servlet(5)
实习培训——Servlet(5) 1 Servlet 简介 Servlet 是什么? Java Servlet 是运行在 Web 服务器或应用服务器上的程序,它是作为来自 Web 浏览器或其他 HT ...
- jmeter 测试websocket接口(二)
1.到https://github.com/maciejzaleski/JMeter-WebSocketSampler下载Jmeter的WebSocket协议的支持插件:JMeterWebSocket ...
- Django中的admin组件分析
admin的使用介绍 django-admin的使用 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.可以在项目的 setting ...
- Quick Look at the Air Jordan 32
A color with 25 years of history in the Air Jordan line will once again leave its mark on the Air Jo ...
- 圆锥体完全均衡下重力异常正演 [MATLAB]
在完全均衡的模型下,若地表有一圆锥体(山峰等),计算跨越山顶的截面上所得到的各种重力异常. 地壳密度 $kg\cdot m^{-3}$ 上地幔密度 $g\cdot cm^{-3}$ 地表地形圆锥体半径 ...