Sum It Up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6448    Accepted Submission(s):
3365

Problem Description
Given a specified total t and a list of n integers,
find all distinct sums using numbers from the list that add up to t. For
example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four
different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a
sum as many times as it appears in the list, and a single number counts as a
sum.) Your job is to solve this problem in general.
 
Input
The input will contain one or more test cases, one per
line. Each test case contains t, the total, followed by n, the number of
integers in the list, followed by n integers x1,...,xn. If n=0 it signals the
end of the input; otherwise, t will be a positive integer less than 1000, n will
be an integer between 1 and 12(inclusive), and x1,...,xn will be positive
integers less than 100. All numbers will be separated by exactly one space. The
numbers in each list appear in nonincreasing order, and there may be
repetitions.
 
Output
For each test case, first output a line containing
'Sums of', the total, and a colon. Then output each sum, one per line; if there
are no sums, output the line 'NONE'. The numbers within each sum must appear in
nonincreasing order. A number may be repeated in the sum as many times as it was
repeated in the original list. The sums themselves must be sorted in decreasing
order based on the numbers appearing in the sum. In other words, the sums must
be sorted by their first number; sums with the same first number must be sorted
by their second number; sums with the same first two numbers must be sorted by
their third number; and so on. Within each test case, all sums must be distince;
the same sum connot appear twice.
 
Sample Input
4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0
 
Sample Output
Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25
 自己拿set判的重,代码还有瑕疵,数据太水水过。哎
这道题也是每次两种决策,加上这个数或者不加,判重类似于全排列的判重方式。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int num,n,pos;
int a[15],b[15];
bool judge = false;
void output(int depth)
{
for(int i =0 ;i< depth; ++i)
if(!i) printf("%d",b[i]);
else printf("+%d",b[i]);
printf("\n");
}
void dfs(int depth,int sum,int pos)                                //每一位数字只有两种可能(加/不加),pos表示当前进行到了哪一位,depth表示b里保存的数字数量便于打印
{
if(sum == num) {judge = true;output(depth); return;}
if(sum>num) return;// 超出了 终止递归
if(pos>=n) return; //选择的数的位置超出数据范围
b[depth] = a[pos];
dfs(depth+1,sum+a[pos],pos+1);
while(pos+1<n&&a[pos] == a[pos+1]) pos++;//关键  判重
dfs(depth,sum,pos+1);

}
int main()
{

while(scanf("%d%d",&num,&n) && num){
printf("Sums of %d:\n",num);
for(int i = 0; i<n; ++i) scanf("%d",&a[i]);
judge = false;
dfs(0,0,0);

if(judge == false) printf("NONE\n");
}
return 0;
}

hdu 1258的更多相关文章

  1. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  2. hdu 1258 Sum It Up(dfs+去重)

    题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...

  3. HDU 1258 Sum It Up(dfs 巧妙去重)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...

  4. poj1564 Sum It Up (zoj 1711 hdu 1258) DFS

    POJhttp://poj.org/problem?id=1564 ZOJhttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=711 ...

  5. hdu 1258 Sum It Up (dfs+路径记录)

    pid=1258">Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  6. HDU 1258 Sum It Up

    Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  7. (step4.3.4)hdu 1258(Sum It Up——DFS)

    题目大意:输入t,n,接下来有n个数组成的一个序列.输出总和为t的子序列 解题思路:DFS 代码如下(有详细的注释): #include <iostream> #include <a ...

  8. POJ 1564(HDU 1258 ZOJ 1711) Sum It Up(DFS)

    题目链接:http://poj.org/problem?id=1564 题目大意:给定一个整数t,和n个元素组成的集合.求能否用该集合中的元素和表示该整数,如果可以输出所有可行解.1<=n< ...

  9. hdu 1258 DFS

    I - 深搜 基础 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:10000KB     64bi ...

  10. HDU 1258 Sum It Up(DFS)

    题目链接 Problem Description Given a specified total t and a list of n integers, find all distinct sums ...

随机推荐

  1. 利用构造函数对canvas里面矩形与扇形的绘制进行一个封装

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. 基于GIT的管理

    常用命令 git init : 初始化仓库git add 文件名 :把文件添加到暂存区git commit -m "操作记录" : 提交到仓库,设置相关操作的记录 git stat ...

  3. Python3: Windows系统上同时安装Python2和Python3

    Python3: Windows系统上同时安装Python2和Python3 为什么要同时安装Python2和Python3环境呢? 因为一些库只支持Python2或者Python3; 在同一台电脑上 ...

  4. 01: vue.js安装

    1.1 vue.js安装与基本使用 官网:https://cn.vuejs.org/ 1.使用之前,我们先来掌握3个东西是用来干什么的 1. npm: Nodejs下的包管理器. 2. webpack ...

  5. linux 之awk命令详解

    awk是一种程序语言,对文档资料的处理具有很强的功能.awk名称是由它三个最初设计者的姓氏的第一个字母而命名的: Alfred V. Aho.Peter J. We i n b e rg e r.Br ...

  6. CSS 常用语法与盒模型分析

    CSS基础知识 CSS规则由两个主要的部分构成:选择器,以及一条或者多条声明 selector { property: value; property: value; ... property: va ...

  7. 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...

  8. 3、CommonChunkPlugin提取公共js-以提取一个jquery为例

    cnpm install css-loader --save-dev    //css-loader 是将css打包进js cnpm install style-loader --save-dev   ...

  9. 【TCP/IP详解 卷一:协议】TCP的小结

    前言:TCP学习的综述 在学习TCP/IP协议的大头:TCP协议 的过程中,遇到了很多机制和知识点,详解中更是用了足足8章的内容介绍它. TCP协议作为 应用层 和 网络层 中间的 传输层协议,既要为 ...

  10. makefile 中的符号替换($@、$^、$<、$?)

    Makefile  $@, $^, $< $@  表示目标文件$^  表示所有的依赖文件$<  表示第一个依赖文件$?  表示比目标还要新的依赖文件列表 如一个目录下有如下文件: $ ls ...