传送门

题意:有$N$种物品,其中$T$个物品有限定数量$B_i$,其他则没有限定。问从中取出不超过$M$个物品的方案数,对质数$P$取模。$N,M \leq 10^9 , T \leq 15 , P \leq 10^5$


在$N$种物品中选出不超过$M$种物品的方案数可以用插板法(插板法只能满足刚好$M$个,那么我们可以虚构出一个数量无限的物品,把剩下的没选择完的都丢给它,这样插板法就能做了)

发现$T$很小,直接容斥。$N,M \leq 10^9$不能直接预处理,考虑到$P$为质数且范围较小,可以使用$Lucas$

 #include<bits/stdc++.h>
 using namespace std;

 inline int read(){
     ;
     ;
     char c = getchar();
     while(c != EOF && !isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(c != EOF && isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }

 ;
 ] , ny[MAXN + ] , B[] , ans;

 inline int poww(long long a , int b){
     ;
     while(b){
         )
             times = times * a % Q;
         a = a * a % Q;
         b >>= ;
     }
     return times;
 }

 inline int C(int N , int M){
      || M <  || N < M)
         ;
     return 1ll * jc[N] * ny[M] % Q * ny[N - M] % Q;
 }

 int lucas(int N , int M){
     )
         ;
     return 1ll * C(N % Q , M % Q) * lucas(N / Q , M / Q) % Q;
 }

 void choose(int now , int num , int cnt){
     )
         return;
     if(now > M)
         ans = (ans + (cnt &  ? -1ll : 1ll) * lucas(num + N , N) + Q) % Q;
     else{
         choose(now +  , num , cnt);
         choose(now +  , num - B[now] -  , cnt + );
     }
 }        

 int main(){
 #ifdef LG
     freopen("4640.in" , "r" , stdin);
 #endif
     N = read();
     M = read();
     P = read();
     Q = read();
     jc[] = ny[] = ;
      ; i < Q ; i++)
         jc[i] = jc[i - ] * i % Q;
     ny[Q - ] = poww(jc[Q - ] , Q - );
      ; i ; i--)
         ny[i] = ny[i + ] * (i + ) % Q;
      ; i <= M ; i++)
         B[i] = read();
     choose( , P , );
     cout << ans;
     ;
 }

Luogu4640 BJWC2008 王之财宝 容斥、Lucas的更多相关文章

  1. hdu5794 A Simple Chess 容斥+Lucas 从(1,1)开始出发,每一步从(x1,y1)到达(x2,y2)满足(x2−x1)^2+(y2−y1)^2=5, x2>x1,y2>y1; 其实就是走日字。而且是往(n,m)方向走的日字。还有r个障碍物,障碍物不可以到达。求(1,1)到(n,m)的路径条数。

    A Simple Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  2. HDU5794 A Simple Chess 容斥+lucas

    分析:转自http://blog.csdn.net/mengzhengnan/article/details/47031777 一点感想:其实这个题应该是可以想到的,但是赛场上并不会 dp[i]的定义 ...

  3. hdu-5794 A Simple Chess(容斥+lucas+dp)

    题目链接: A Simple Chess Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Ot ...

  4. Codeforces Round #258 (Div. 2) 容斥+Lucas

    题目链接: http://codeforces.com/problemset/problem/451/E E. Devu and Flowers time limit per test4 second ...

  5. [BJWC2008]王之财宝

    嘟嘟嘟 如果没有限制,而且必须选\(m\)件的话,就是隔板法\(C_{n + m - 1} ^ {m - 1}\)了.现在要选至多\(m\)件,那么就相当于新增一个板儿,分出的新的盒子表示" ...

  6. A Simple Chess---hdu5794(容斥+Lucas)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5794 题意:给你一个n*m的网格,问从(1, 1)走到(n, m)的方案数是多少,其中有r ...

  7. P4640-[BJWC2008]王之财宝【OGF,Lucas定理】

    正题 题目链接:https://www.luogu.com.cn/problem/P4640 题目大意 \(n\)种物品,其中\(t\)种物品是有个数限制的,第\(i\)种限制为\(b_i\),求选出 ...

  8. 洛谷P4640 王之财宝 [BJWC2008] 数论

    正解:容斥+Lucas+组合数学 解题报告: 传送门! 和上一篇题解的题差不多,,,双倍经验趴大概算 还是说下还是有点儿区别的来着$QwQ$ 两个小差别分别港下$QwQ$ 首先有$m-n$件是无穷个的 ...

  9. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

随机推荐

  1. video 铺满父元素(object-fit: fill;)

    遇到这个属性,是在给video 嵌入一个div时,导致video播放器上下有灰色.在控制台查看video默认样式的时候看到了这个属性. 播放器上下的灰色,不是我们想要的样式,如果能完全覆盖就更好了. ...

  2. JMeter 利用Jmeter批量数据库插入数据

    利用Jmeter批量数据库插入数据   by:授客 QQ:1033553122 1.   启动Jmeter 2.   添加 DBC Connection Configuration 右键线程组-> ...

  3. Expo大作战(三十七)--expo sdk api之 GLView,GestureHandler,Font,Fingerprint,DeviceMotion,Brightness

    简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...

  4. Ubuntu16.04升级 Ubuntu18.04

    1.更新资源 $ sudo apt-get update $ sudo apt-get upgrade $ sudo apt dist-upgrade 2.安装update-manager-core ...

  5. (网页)Java日志记录框架Logback配置详解(企业级应用解决方案)(转)

    转自CSDN: 前言 Logback是现在比较流行的一个日志记录框架,它的配置比较简单学习成本相对较低,所以刚刚接触该框架的朋友不要畏惧,多花点耐心很快就能灵活应用了.本篇博文不会具体介绍Logbac ...

  6. virtualenv 的使用

    首先,我们用pip安装virtualenv: 一.使用与启动: $ pip3 install virtualenv 然后,假定我们要开发一个新的项目,需要一套独立的Python运行环境,可以这么做: ...

  7. 进程间通信——LINUX

    1.编写一段程序,使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进  程捕捉键盘上来的中断信号(即按ctrl+c键),当捕捉到中断信号后,父进程用系统调用kill( )向 ...

  8. Oracle 表操作(转)

    1.增加新字段:alter table table_name add (name varchar(20) default 'http://www.zangjing.net/');. 2.修改表字段:a ...

  9. 【PAT】B1056 组合数的和(15 分)

    就看着代码量一直到没什么好说的了 #include<stdio.h> int main(){ int N,K;scanf("%d",&N); int sum=0 ...

  10. Linux运维之每日小技巧-检测网站状态以及PV、UV等介绍

    [root@ELK-chaofeng07 httpd]# curl -o /dev/null -w %{http_code}\\n -s www.baidu.com 状态码为200表示成功. PV.U ...