MT【43】抛物线不常见性质2.


注:S为抛物线焦点
MT【43】抛物线不常见性质2.的更多相关文章
- MT【44】抛物线不常见性质3
注:S为抛物线的焦点
- MT【42】抛物线不常见性质1.
评:特别的,当$PP'$为切线时,$\angle PSK=90^0$ 注:S为抛物线焦点.
- MT【237】阿基米德三角形的一些常见性质
阿基米德三角形的常见性质:抛物线:$x^2=2py,AB$为抛物线的弦,$AQ,BQ$为切线,记$Q(x_0,y_0)$则$1)k_{QA}*k_{QB}=\dfrac{p}{2x_0}$$2)k_{ ...
- 【C++进阶:STL常见性质】
STL中的常用容器包括:顺序性容器(vector.deque.list).关联容器(map.set).容器适配器(queue.stac) 转载自:https://blog.csdn.net/u0134 ...
- 【C++进阶:STL常见性质3】
STL3个代表性函数:for_each(), random_shuffle(), sort() vector<int> stuff; random_shuffle(stuff.begin( ...
- 【C++进阶:STL常见性质2】
一般STL函数接收迭代器参数的规则为:[it1, it2) 左闭右开区间: vector<int> scores; scores.erase(scores.begin(),scores.e ...
- 【learning】莫比乌斯反演
吐槽 额其实这个东西的话..好像缠着机房里面的dalao们给我讲过好多遍了然后.. 拖到现在才搞懂也是服了qwq(可能有个猪脑子) 感觉就是主要几条式子然后疯狂换元换着换着就化简运算了? 草稿纸杀手q ...
- 线性回归(linear regression)
基本形式 最小二乘法估计拟合参数 最小二乘法:基于均方误差最小化来进行模型求解的方法称为“最小二乘法”(least square method) 即(左边代表 $\mathbf{\omega }$ 和 ...
- (暂时弃坑)(半成品)ACM数论之旅18---反演定理 第二回 Mobius反演(莫比乌斯反演)((づ ̄3 ̄)づ天才第一步,雀。。。。)
莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d ...
随机推荐
- BZOJ3149 CTSC2013 复原 搜索
传送门 \(N \leq 20\)很适合暴搜-- 第二问最大独立集裸题,\(O(2^NN)\)的算法都能过-- 考虑第一问,使用搜索寻找可行解 每一次枚举一条弦的两个端点,通过位运算计算与其相交的弦的 ...
- xhtml和html的区别 html5和xhtml的区别
xhtml和html的区别 - 分为两大类比较:一个是功能上的差别,另外是书写习惯的差别.关于功能上的差别,主要是XHTML可兼容各大浏览器.手机以及PDA,并且浏览器也能快速正确地编译网页,- XH ...
- RHEL7VIM编辑器
本文介绍Vim编辑器的使用 vi和vim的区别 它们都是多模式编辑器 不同的是vim是vi的升级版本 它不仅兼容vi的所有指令而且还有一些新的特性在里面 vim的这些优势主要体现在以下几个方面 多级撤 ...
- 【JVM.5】类文件结构
鲁迅曾经说过:代码编译的结构从本地机器码转变为字节码,是存储格式发展的一小步,确是编程语言发展的一大步. 一.无关性的基石 Java设计者在最初就承诺过“In the future, we will ...
- 新人入坑Redis必会的吐血总结
新人入坑Redis必会的吐血总结 一.什么是Redis Redis是一个使用C语言开发的开源的高性能的key-value存储系统,我们可以把它近似理解为Java Map.简单来讲,Redis是一种NO ...
- Java Mongo 自定义序列化笔记
从insert方法入手 1. org.springframework.data.mongodb.repository.support.SimpleMongoRepository.java inse ...
- MongoDB集群运维笔记
前面的文章介绍了MongoDB副本集和分片集群的做法,下面对MongoDB集群的日常维护操作进行小总结: MongDB副本集故障转移功能得益于它的选举机制.选举机制采用了Bully算法,可以很方便从分 ...
- PHP从入门到精通(一)
(一)PHP简介和基本知识 PHP(外文名:PHP: Hypertext Preprocessor,中文名:“超文本预处理器”)是一种通用开源脚本语言.语法吸收了C语言.Java和Perl的特点,利于 ...
- taro之React Native 端开发研究
初步结论:如果想把 React Native 集成到现有的原生项目中,不能使用taro的React Native 端开发功能(目前来说不能实现,以后再观察). RN开发有2种模式: 1.一是原生A ...
- 作用域&作用域链和with,catch语句&闭包
作用域(函数) 作用域:变量与函数的可访问范围,即作用域控制着变量与函数的可见性和生命周期; 在一些类C编程语言中花括号内的每一段代码都有各自的作用域,而且变量在声明它们的代码段外是不可见的,称之为块 ...