矩阵取数问题(dp,高精)
题目描述
帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n×mn \times mn×m的矩阵,矩阵中的每个元素ai,ja_{i,j}ai,j均为非负整数。游戏规则如下:
- 每次取数时须从每行各取走一个元素,共nnn个。经过mmm次后取完矩阵内所有元素;
- 每次取走的各个元素只能是该元素所在行的行首或行尾;
- 每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值×2i\times 2^i×2i,其中iii表示第iii次取数(从111开始编号);
- 游戏结束总得分为mmm次取数得分之和。
帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。
输入输出格式
输入格式:
输入文件包括n+1n+1n+1行:
第111行为两个用空格隔开的整数nnn和mmm。
第2∽n+12\backsim n+12∽n+1行为n×mn \times mn×m矩阵,其中每行有mmm个用单个空格隔开的非负整数。
输出格式:
输出文件仅包含111行,为一个整数,即输入矩阵取数后的最大得分。
输入输出样例
说明
NOIP 2007 提高第三题
数据范围:
60%的数据满足:1≤n,m≤301\le n, m \le 301≤n,m≤30,答案不超过101610^{16}1016
100%的数据满足:1≤n,m≤801\le n, m \le 801≤n,m≤80,0≤ai,j≤10000 \le a_{i,j} \le 10000≤ai,j≤1000
分析:这道题主要是用来练习dp ,没有涉及高精的问题,因此代码是不能AC的,但是也学习了一下dp的思想,在洛谷上能够过六个点。。。
我们用dp[i][j]代表区间变为【i,j】时,获得的最大分数当区间变为[i][j]时,一定是由【i-1,j】或者是[i,j-1]这两个符合条件的方程式中转移过来的,在第m-(j-i)-1次i取走了当前值。。。
因此状态转移方程就是 dp[i][j]=max(dp[i-1][j]+a[t][i-1]*mypow(len),dp[i][j+1]+a[t][j+1]*mypow(len));
在这要注意一下,当区间长度为1时,它是没有办法把最后一个数字取出来的。因此在这里要在重新加上。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define ll unsigned long long
const int maxn = ;
ll mypow(int k){
ll sum=;
for(int i=; i<=k; i++ ){
sum*=;
}
return sum;
} int n,m;
ll ans=; int main(){
cin>>n>>m;
int a[maxn][maxn];
memset(a,,sizeof(a));
ll dp[maxn][maxn];
for( int i=; i<=n; i++ ){
for( int j=; j<=m; j++ ){
scanf("%d",&a[i][j]);
}
}
int t=; while(t++<n){
memset(dp,,sizeof(dp));
for( int i=; i<=m; i++ ){
for( int j=m; j>=i; j-- ){
int len =m-(j-i)-; }
}
// for( int i=1; i<=m; i++ ){
// for( int j=1; j<=m; j++ ){
// cout<<dp[i][j]<<" ";
// }
// cout<<endl;
// }
ll rev=;
int i;
for( i=; i<=m; i++ ){
ll r=dp[i][i]+a[t][i]*mypow(m);
if(r>rev) rev=r;
}
// cout<<"rev="<<rev<<endl;
ans+=rev;
}
cout<<ans<<endl;
return ;
}
矩阵取数问题(dp,高精)的更多相关文章
- [P1005][NOIP2007] 矩阵取数游戏 (DP+高精)
我不会高精…… 也不会DP…… 这道题即考高精又考DP…… 我要死了 给一个不是高精的代码(当然不能满分) #include<cstdio> #include<iostream> ...
- [LuoguP1005]矩阵取数游戏 (DP+高精度)
题面 传送门:https://www.luogu.org/problemnew/show/P1005 Solution 我们可以先考虑贪心 我们每一次都选左右两边尽可能小的数,方便大的放在后面 听起来 ...
- 1083 矩阵取数问题(DP)
1083 矩阵取数问题 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 收藏 关注 一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走 ...
- HDU 1176 免费馅饼 矩阵取数, dp + 滚动数组
http://acm.hdu.edu.cn/showproblem.php?pid=1176 首先可以处理出整张地图的状态. book[T][POS]表示第T秒,在第pos个地方有多少个馅饼. dp[ ...
- 矩阵取数游戏 2007年NOIP全国联赛提高组(dp+高精)
矩阵取数游戏 2007年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description [问题描述]帅帅经常跟 ...
- 1166 矩阵取数游戏[区间dp+高精度]
1166 矩阵取数游戏 2007年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description [ ...
- NOIP2007矩阵取数[DP|高精度]
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...
- 51Nod 1083 矩阵取数问题(矩阵取数dp,基础题)
1083 矩阵取数问题 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下 ...
- P1005 矩阵取数游戏 区间dp 高精度
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n \times mn×m的矩阵,矩阵中的每个元素a_{i,j}ai,j均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n ...
随机推荐
- 解决Android Studio出现Failed to open zip file. Gradle's dependency cache may be corrupt的问题
问题如下图所示: 解决: 修改 gradle-wrapper.properties里的gradle的版本,与之前没有报错的gradle版本一致.就可以了 比如我报这个错的时候 : distributi ...
- Log4j/Log4j2自定义Appender来实现日志级别计数统计及监控
一.简述 本文主要讲如何基于Log4j2来实现自定义的Appender.一般用途是用于Log4j2自带的Appender不足以满足我们的需求,或者需要我们对日志进行拦截统计等操作时,需要我们自定义Ap ...
- php 日期处理 DateTime
获取所有的时区: print_r(timezone_abbreviations_list ()); 获取毫秒级时间戳 // php7.1+ always has microseconds enable ...
- Couldn't find log associated with operation handle: OperationHandle [opType=EXECUTE_STATEMENT, getHandleIdentifier ()=5687ff62-aa71-4b47-af6c-89f6a3f7a1fe]
这个异常的出现是因为hive-site-xml中的hive.server2.logging.operation.log.location属性未配置正确: 修改为: <property> & ...
- window.print控制打印样式
我们可能会去使用window.print()方法来打印页面,但是当我们遇到需要改变打印时候的字体大小等css样式的时候你可能会懵逼. 所以搜索成了我们的必经之路,我相信在网上搜索出来的最好的答案就是使 ...
- LVS简介与使用
一.LVS是什么? LVS的英文全称是Linux Virtual Server,即Linux虚拟服务器.它是我们国家的章文嵩博士的一个开源项目.在linux内存2.6中,它已经成为内核的一部分,在此之 ...
- select 与 time.After 配合使用的问题
今天在工作中发现了一个有趣的现象. 在一个select中设定了两个定时器,本来预计哪个定时器到达就运行相应指令的,但是发现最终只有时间最短的定时器一直得到执行,其它定时器完全没有得到执行. packa ...
- 【小工具】根据定义的白名单字段进行Bean的拷贝
背景 Bean的拷贝一直有一些类可以使用,比如Apache的org.apache.commons.beanutils.BeanUtils或者Spring的org.springframework.bea ...
- 怎样通过 DLNA 将电脑上的媒体投射到智能电视上
DLNA 是一种网络设备间共享媒体的解决方案.从 Windows 7 开始就支持 DLNA,现在一些国产智能电视也已经支持 DLNA 了,这就为我们在电脑和电视之间方便地共享多媒体提供了条件. 工具/ ...
- SparkStreaming基本架构及使用
1.简介 Spark Streaming处理的数据流图: Spark Streaming在内部的处理机制是,接收实时流的数据,并根据一定的时间间隔拆分成一批批的数据,然后通过Spark Engine处 ...