Description:

有一棵点数为 N 的树,树边有边权。给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 。 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。

Hint:

\(n \le 2^3\)

Solution:

很好的树型dp题

设状态\(f[i][j]\)表示i点子树染j个黑点的最大距离和

然而无法转移

换一种角度,考虑每条边对答案的贡献

设一条边的下面一端u的子树中有k个黑点

则\(Ans=k*(m-k)+(sz[u]-k)*(n-sz[u]-m+k)\)

这样就能用树型背包做了

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e5+5;
int n,m,cnt,hd[mxn],sz[mxn];
ll f[2005][2005]; inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;} struct ed {
int to,nxt,w;
}t[mxn<<1]; inline void add(int u,int v,int w) {
t[++cnt]=(ed) {v,hd[u],w}; hd[u]=cnt;
} void dfs(int u,int fa)
{
sz[u]=1; f[u][0]=f[u][1]=0;
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to;
if(v==fa) continue ;
dfs(v,u); sz[u]+=sz[v];
for(int j=min(m,sz[u]);j>=0;--j) {
if(f[u][j]!=-1)
f[u][j]+=f[v][0]+1ll*sz[v]*(n-m-sz[v])*t[i].w; //这里一定要先处理v为0的答案,如果在后面转移就会错
for(int k=min(j,sz[v]);k;--k) {
if(f[u][j-k]==-1) continue ;
ll val=1ll*(k*(m-k)+(sz[v]-k)*(n-m-sz[v]+k))*t[i].w;
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]+val);
}
}
}
} int main()
{
memset(f,-1,sizeof(f));
n=read(); m=read(); int u,v,w;
for(int i=1;i<n;++i) {
u=read(); v=read(); w=read();
add(u,v,w); add(v,u,w);
}
dfs(1,1);
printf("%lld",f[1][m]);
return 0;
}

[HAOI2015]树上染色的更多相关文章

  1. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  2. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  3. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  4. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  5. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  6. BZOJ_4033_[HAOI2015]树上染色_树形DP

    BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...

  7. BZOJ 4033[HAOI2015] 树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3188  Solved: 1366[Submit][Stat ...

  8. [HAOI2015]树上染色(树形dp)

    [HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所 ...

  9. [HAOI2015]树上染色(树上dp)

    [HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\ ...

  10. [HAOI2015]树上染色 树状背包 dp

    #4033. [HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白 ...

随机推荐

  1. jenkins 实现测试发布、预发布、真实发布、回滚发布

    主要思路: 1.做三个文件夹,用于放置不可随意修改的配置文件(测试发布.预发布.真实发布) 2.每次都先修改配置文件再进行构建(构建时会先把配置文件复制到构建的目录,再同步到发布的目录) 3.发布完代 ...

  2. springcloud Eureka控制台参数说明

    Home进入Eureka控制台首页,首先看HOME页的头部 System Status Environment : 环境,默认为test, 该参数在实际使用过程中,可以不用更改 Data center ...

  3. Visual Studio上编译ncnn

    prerequisite 是为了在PC上熟悉ncnn的基本代码,所以用Visual Studio来配置的. 期间用过VS2013(update5)/VS2015/VS2017,反正都是基于CMake生 ...

  4. WPF:如何高速更新Model中的属性

    原文:[WPF/MVVM] How to deal with fast changing properties In this article, I will describe a problem w ...

  5. vi不保存退出

    To quit the vi editor without saving any changes you've made If you are currently in insert or appen ...

  6. python---使用递归实现谢尔宾斯基三角形及汉诺塔

    渐入佳境. # coding: utf-8 import turtle ''' # =================turtle练手== def draw_spiral(my_turtle, lin ...

  7. 开始写博客,学习Linq

    除了为处理数据提供全新的方法之外,LINQ还代表了一种朝着声明式以及函数式编程发展的转变. 当人们问我为什么要学习LINQ时,我会告诉他们LINQ可以处理XML.关系型数据以及内存中的集合,更会提到L ...

  8. centos 6 切换base源

    切换为阿里云源: mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup && wg ...

  9. C# 之 HttpResponse 类

    Response 对象,派生自HttpResponse 类,该类封装来自 ASP.NET 操作的 HTTP 响应信息.存在于System.Web命名空间下. 注:MIME(Multipurpose I ...

  10. JMeter执行压测输出HTML图形化报表(二)

    命令行模式将jtl转成测试图表 注意此方法只使用jmeter3.0以后版本 第一种:在测试过程中将jtl转成测试报告(在jmeter的bin目录下执行) jmeter -n -t baidu_requ ...