ArcTan
When the ArcTan functional configuration is selected, the input vector (X_IN,Y_IN) is rotated
(using the CORDIC algorithm) until the Y component is zero. This generates the output
angle, Atan(Y_IN/X_IN).
The inputs, X_IN and Y_IN, are limited to the ranges given in Table 3-5 when coarse rotation
is set. Inputs outside these ranges produce unpredictable outputs. See Input/Output Data
Representation for more information about CORDIC binary data formats.
An optional coarse rotation module is provided to extend the range of inputs X_IN and Y_IN
to the full circle. For this functional configuration, the coarse rotation module is selected by
default, but can be manually deselected. See Advanced Configuration Parameters for more
information. When this option is not set, inputs must be constrained to lie in the first
quadrant, -Pi/4 to + Pi/4.
The compensation scaling module is disabled for the ArcTan functional configuration as no
magnitude data is output. The ArcTan of a zero length vector, (0,0), is indeterminate and the
output angle generated by the core is undefined.
The accuracy of the output angle from the CORDIC vector translation algorithm is limited by
the number of significant magnitude bits of the input vector (X_IN, Y_IN). See Output
Quantization Error for more information.

arctan的更多相关文章

  1. SPOJ ARCTAN

    POJ1183 除输入方式外与这道题完全一样 题目大意是给定一个a 求最小的满足arctan(1/A)=arctan(1/B)+arctan(1/C) 的B+C的最小值 根据上述递推规律,我们只要从2 ...

  2. Use of Function Arctan

    Use of Function Arctan Time Limit:10000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu S ...

  3. 一个arctan积分的两种解法

    \[\Large\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x\] \(\Large\mathbf{Solution:}\) 首先第一种 ...

  4. 一个包含arctan与arctanh的积分

    \[\Large\int_0^1\frac{\arctan x \,\operatorname{arctanh} x\, \ln x}{x}\mathrm{d}x=\frac{\pi^2}{16}\m ...

  5. SPOJ ARCTAN (数论) Use of Function Arctan

    详细的题解见这里. 图片转自上面的博客 假设我们已经推导出来x在处取得最小值,并且注意到这个点是位于两个整点之间的,所以从这两个整数往左右两边枚举b就能找到b+c的最小值. 其实只用往一边枚举就够了, ...

  6. pascal中的xor,shr,shl,Int(),ArcTan(),copy,delete,pos和leftstr,RightStr等详解

    数学函数:Inc(i)使I:=I+1;Inc(I,b)使I:=I+b;Abs(x)求x的绝对值例:abs(-3)=3Chr(x)求编号x对应的字符. 例:Chr(65)=’A’chr(97)=’a’c ...

  7. simpson法计算arctan(1)-即pi/4

    对1/(1+x^2) 进行0到1的积分即使pi/4; 采用simpson方法 Func<double,double> func=(x)=>{ return 1/(1+ Math.Po ...

  8. 北京培训记day1

    数学什么的....简直是丧心病狂啊好不好 引入:Q1:前n个数中最多能取几个,使得没有一个数是另一个的倍数   答案:(n/2)上取整 p.s.取后n/2个就好了 Q2:在Q1条件下,和最小为多少 答 ...

  9. sift特征源码

    先贴上我对Opencv3.1中sift源码的注释吧,虽然还有很多没看懂.先从detectAndCompute看起 void SIFT_Impl::detectAndCompute(InputArray ...

随机推荐

  1. docker被入侵后.............

    服务器上线后,怎么发现总有个 xmrig 的容器在跑,删了还出来 那么恭喜你!!你的服务器已经被入侵了!! $ docker ps IMAGE               COMMAND       ...

  2. 【Codeforces 1105E】Helping Hiasat

    Codeforces 1105 E 题意:给你m个事件,每个事件可能是以下两种之一: \(1\),代表此时可以更改用户名 \(2\) \(s\),代表\(s\)来查看是否用户名与其名字相符 一共有\( ...

  3. CF662C Binary Table FWT

    传送门 \(N \leq 20\)很小诶 一个暴力的思路是枚举行的翻转状态然后在列上贪心 复杂度为\(O(2^NM)\)显然过不去 考虑到可能有若干列的初始状态是一样的,那么在任意反转之后他们贪心的策 ...

  4. Log4j2使用笔记

                 log4j2是log4j的最新版,现在已经有很多公司在使用了.log4j2和log4j的优缺点对比,请自行百度. 上一篇笔记讲了关于log4j的使用.这篇笔记主要讲解log4 ...

  5. ionic Cannot find module 'internal/fs'问题

    最近升级了node.js到7.3.0之后,在用cordoval add plugin XXX 命令安装插件的时候报"Cannot find module 'internal/fs'" ...

  6. Intellij IDEA的下载和使用(针对学生的免费使用计划)

    一.下载和使用授权(针对学生) 1.下载 可以在Intellij IDEA官网上下载需要的版本.下载地址:https://www.jetbrains.com/idea/ 2.学生免费试用 首先,你得现 ...

  7. Nancy异步用法

    个人笔记,记录Nancy异步用法 基类,所有请求都将首先执行该类,并执行Before事件 namespace CxyAdvert.Base { public class BaseNancyModel ...

  8. Jlink使用技巧之烧写SPI Flash存储芯片

    前言 大多数玩单片机的人都知道Jlink可以烧写Hex文件,作为ARM仿真调试器,但是知道能烧写SPI Flash的人应该不多,本篇文章将介绍如何使用JLink来烧写或者读取SPI Flash存储器, ...

  9. @Vue/Cli 3 关于 render 空的处理

    问题场景 vue-cli 3 在打包部署时候会出现 dist folder not working "Uncaught TypeError: Cannot set property 'ren ...

  10. BugkuCTF web基础$_GET

    前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...