BZOJ4822[Cqoi2017]老C的任务——树状数组(二维数点)
题目描述
输入
输出
样例输入
0 0 1
0 1 2
2 2 4
1 0 8
0 0 1 1
1 1 5 6
样例输出
4
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
struct node
{
int x;
int y;
int num;
int cnt;
int v;
}s[10000010];
int n,m;
ll v[10000010];
int a,b,c,d;
int g[10000010];
int maxy;
int tot;
ll ans[2000010][5];
void add(int x,int k)
{
for(int i=x;i<=maxy;i+=i&-i)
{
v[i]+=1ll*k;
}
}
ll ask(int x)
{
ll res=0;
for(int i=x;i;i-=i&-i)
{
res+=v[i];
}
return res;
}
bool cmp(node a,node b)
{
if(a.x==b.x)
{
if(a.y==b.y)
{
return a.cnt<b.cnt;
}
return a.y<b.y;
}
return a.x<b.x;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&s[i].x,&s[i].y,&s[i].v);
g[i]=s[i].y;
}
tot=n;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&a,&b,&c,&d);
s[++tot].x=a-1;
s[tot].y=b-1;
s[tot].cnt=i;
s[tot].num=1;
g[tot]=b-1;
s[++tot].x=a-1;
s[tot].y=d;
s[tot].cnt=i;
s[tot].num=2;
g[tot]=d;
s[++tot].x=c;
s[tot].y=b-1;
s[tot].cnt=i;
s[tot].num=3;
g[tot]=b-1;
s[++tot].x=c;
s[tot].y=d;
s[tot].cnt=i;
s[tot].num=4;
g[tot]=d;
}
sort(g+1,g+1+tot);
sort(s+1,s+1+tot,cmp);
maxy=unique(g+1,g+1+tot)-g-1;
for(int i=1;i<=tot;i++)
{
if(!s[i].cnt)
{
int val=lower_bound(g+1,g+1+maxy,s[i].y)-g;
add(val,s[i].v);
}
else
{
int val=lower_bound(g+1,g+1+maxy,s[i].y)-g;
ans[s[i].cnt][s[i].num]=ask(val);
}
}
for(int i=1;i<=m;i++)
{
printf("%lld\n",ans[i][4]+ans[i][1]-ans[i][2]-ans[i][3]);
}
}
BZOJ4822[Cqoi2017]老C的任务——树状数组(二维数点)的更多相关文章
- BZOJ1935: [Shoi2007]Tree 园丁的烦恼(树状数组 二维数点)
题意 题目链接 Sol 二维数点板子题 首先把询问拆成四个矩形 然后离散化+树状数组统计就可以了 // luogu-judger-enable-o2 #include<bits/stdc++.h ...
- 【BZOJ1935/4822】[Shoi2007]Tree 园丁的烦恼/[Cqoi2017]老C的任务 树状数组
题意:两道题差不多,都是给你一堆平面上的点,每个点有权值,然后m次询问求某一矩形区域内的点权和 题解:先离散化,然后将询问拆成左右两条线段,然后将点和这些线段一起按x坐标排序,在y轴上维护树状数组.然 ...
- BZOJ 4822 [Cqoi2017]老C的任务 ——树状数组
直接离散化之后用树状数组扫一遍. 把每一个询问拆成四个就可以做了. %Silvernebula 怒写KD-Tree #include <map> #include <cmath> ...
- bzoj 4822: [Cqoi2017]老C的任务【扫描线+树状数组+二维差分】
一个树状数组能解决的问题分要用树套树--还写错了我别是个傻子吧? 这种题还是挺多的,大概就是把每个矩形询问差分拆成四个点前缀和相加的形式(x1-1,y1-1,1)(x2.y2,1)(x1-1,y2,- ...
- bzoj4785:[ZJOI2017]树状数组:二维线段树
分析: "如果你对树状数组比较熟悉,不难发现可怜求的是后缀和" 设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\( ...
- 树状数组 二维偏序【洛谷P3431】 [POI2005]AUT-The Bus
P3431 [POI2005]AUT-The Bus Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 ...
- 树状数组+二维前缀和(A.The beautiful values of the palace)--The Preliminary Contest for ICPC Asia Nanjing 2019
题意: 给你螺旋型的矩阵,告诉你那几个点有值,问你某一个矩阵区间的和是多少. 思路: 以后记住:二维前缀和sort+树状数组就行了!!!. #define IOS ios_base::sync_wit ...
- BZOJ 4785 [Zjoi2017]树状数组 | 二维线段树
题目链接 BZOJ 4785 题解 这道题真是令人头秃 = = 可以看出题面中的九条可怜把求前缀和写成了求后缀和,然后他求的区间和却仍然是sum[r] ^ sum[l - 1],实际上求的是闭区间[l ...
- 6月28日考试 题解(GCD约分+动态规划+树状数组二维偏序)
前言:考的一般般吧……T3暴力没打上来挺可惜的,到手的75分没了. ---------------------------------- T1 [JZOJ4745]看电影 Description 听说 ...
随机推荐
- Android开发中代码下面出现波浪线问题
在Android Studio中写代码时,经常会在一个英文单词的下面出现波浪线,这是因为系统检测到你的这个英文单词不符合规范,如下所示: 解决办法:选中这个单词,点击鼠标右键,点击:Spelling ...
- 算法相关——Java排序算法之冒泡排序(二)
0. 前言 本系列文章将介绍一些常用的排序算法.排序是一个非常常见的应用场景,也是开发岗位面试必问的一道面试题,有人说,如果一个企业招聘开发人员的题目中没有排序算法题,那说明这个企业不是一个" ...
- python语言程序设计?
1, 别说了,我还是有几分蛋疼的.女朋友..计算机..唉 2, 今天把那几个练习写完吧? 3, 这个注释有啥用最前面的?? 4, 我在学完python后必须学完C和C++并开始离散数学和线代高数等全复 ...
- json中获取key值
<script type="text/javascript"> getJson('age'); function getJson(key){ var jsonObj={ ...
- Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)-D- Array Restoration
我们知道不满足的肯定是两边大中间小的,这样就用RMQ查询两个相同等值的区间内部最小值即可,注意边界条件 #include<bits/stdc++.h> #define x first #d ...
- 【个人阅读】软件工程M1/M2做一个总结
1.以前博客链接 http://www.cnblogs.com/penglinjiang/p/4027850.html http://www.cnblogs.com/penglinjiang/p/40 ...
- <<浪潮之巅>>阅读笔记二
好的文章总是慢慢吸引着你去阅读,这本书的作者是吴军博士,让我很钦佩的是他还是一个很著名的程序员.其实我感觉理科生在写作方面的能力是很欠缺的,我们经常做到了有观点,但是做不到和别人表达清楚你的观点想法, ...
- BugPhobia进阶篇章:功能规格说明书
0x01 :特别鸣谢 首先特别鸣谢<构建之法>中并没有给出固定化格式的功能规格说明书的样例,因此在此次的说明书中将尽可能用生动形象的例子展示软件交互阐释 因此受到它本身的启发,此次团队功能 ...
- Java实现小学四则运算练习系统(UI)
github项目地址 :https://github.com/feser-xuan/Arithmetic_test3_UI 小伙伴的博客链接:http://www.cnblogs.com/fukang ...
- Spring事务银行转账示例
https://www.imooc.com/video/9331 声明式事务 @Transactiona() 编程式事务 非模板式(不使用TransactionTemplate) http://cai ...