自然语言处理(NLP)入门学习资源清单
Melanie Tosik目前就职于旅游搜索公司WayBlazer,她的工作内容是通过自然语言请求来生产个性化旅游推荐路线。回顾她的学习历程,她为期望入门自然语言处理的初学者列出了一份学习资源清单。

displaCy网站上的可视化依赖解析树
记得我曾经读到过这样一段话,如果你觉得有必要回答两次同样的问题,那就把答案发到博客上,这可能是一个好主意。根据这一原则,也为了节省回答问题的时间,我在这里给出该问题的标准问法:“我的背景是研究**科学,我对学习NLP很有兴趣。应该从哪说起呢?”
在您一头扎进去阅读本文之前,请注意,下面列表只是提供了非常通用的入门清单(有可能不完整)。 为了帮助读者更好地阅读,我在括号内添加了简短的描述并对难度做了估计。最好具备基本的编程技能(例如Python)。
在线课程
• Dan Jurafsky 和 Chris Manning:自然语言处理[非常棒的视频介绍系列]
https://www.youtube.com/watch?v=nfoudtpBV68&list=PL6397E4B26D00A269
• 斯坦福CS224d:自然语言处理的深度学习[更高级的机器学习算法、深度学习和NLP的神经网络架构]
http://cs224d.stanford.edu/syllabus.html
• Coursera:自然语言处理简介[由密西根大学提供的NLP课程]
https://www.coursera.org/learn/natural-language-processing
图书馆和开放资源
• spaCy(网站,博客)[Python; 新兴的开放源码库并自带炫酷的用法示例、API文档和演示应用程序]
网站网址:https://spacy.io/
博客网址:https://explosion.ai/blog/
演示应用网址: https://spacy.io/docs/usage/showcase
• 自然语言工具包(NLTK)(网站,图书)[Python; NLP实用编程介绍,主要用于教学目的]
网站网址:http://www.nltk.org
图书网址: http://www.nltk.org/book/
• 斯坦福CoreNLP(网站)[由Java开发的高质量的自然语言分析工具包]
网站网址: https://stanfordnlp.github.io/CoreNLP/
活跃的博客
• 自然语言处理博客(HalDaumé)
博客网址:https://nlpers.blogspot.com/
• Google研究博客
博客网址:https://research.googleblog.com/
• 语言日志博客(Mark Liberman)
博客网址:http://languagelog.ldc.upenn.edu/nll/
书籍
• 言语和语言处理(Daniel Jurafsky和James H. Martin)[经典的NLP教科书,涵盖了所有NLP的基础知识,第3版即将出版]
https://web.stanford.edu/~jurafsky/slp3/
• 统计自然语言处理的基础(Chris Manning和HinrichSchütze)[更高级的统计NLP方法]
https://nlp.stanford.edu/fsnlp/
• 信息检索简介(Chris Manning,Prabhakar Raghavan和HinrichSchütze)[关于排名/搜索的优秀参考书]
https://nlp.stanford.edu/IR-book/
• 自然语言处理中的神经网络方法(Yoav Goldberg)[深入介绍NLP的NN方法,和相对应的入门书籍]
https://www.amazon.com/Network-Methods-Natural-Language-Processing/dp/1627052984
入门书籍: http://u.cs.biu.ac.il/~yogo/nnlp.pdf
其它杂项
• 如何在TensorFlow中构建word2vec模型[学习指南]
https://www.tensorflow.org/versions/master/tutorials/word2vec/index.html
• NLP深度学习的资源[按主题分类的关于深度学习的顶尖资源的概述]
https://github.com/andrewt3000/dl4nlp
• 最后一句话:计算语言学和深度学习——论自然语言处理的重要性。(Chris Manning)[文章]
http://mitp.nautil.us/article/170/last-words-computational-linguistics-and-deep-learning
• 对分布式表征的自然语言的理解(Kyunghyun Cho)[关于NLU的ML / NN方法的独立讲义]
https://github.com/nyu-dl/NLP_DL_Lecture_Note/blob/master/lecture_note.pdf
• 带泪水的贝叶斯推论(Kevin Knight)[教程工作簿]
http://www.isi.edu/natural-language/people/bayes-with-tears.pdf
• 国际计算语言学协会(ACL)[期刊选集]
• 果壳问答网站(Quora):我是如何学习自然语言处理的?
https://www.quora.com/How-do-I-learn-Natural-Language-Processing
DIY项目和数据集

• Nicolas Iderhoff已经创建了一份公开的、详尽的NLP数据集的列表。除了这些,这里还有一些项目,可以推荐给那些想要亲自动手实践的NLP新手们:
数据集:https://github.com/niderhoff/nlp-datasets
• 基于隐马尔可夫模型(HMM)实现词性标注(POS tagging).
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Hidden_Markov_model
• 使用CYK算法执行上下文无关的语法解析
https://en.wikipedia.org/wiki/CYK_algorithm
https://en.wikipedia.org/wiki/Context-free_grammar
• 在文本集合中,计算给定两个单词之间的语义相似度,例如点互信息(PMI,Pointwise Mutual Information)
https://en.wikipedia.org/wiki/Semantic_similarity
https://en.wikipedia.org/wiki/Pointwise_mutual_information
• 使用朴素贝叶斯分类器来过滤垃圾邮件
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
• 根据单词之间的编辑距离执行拼写检查
https://en.wikipedia.org/wiki/Spell_checker
https://en.wikipedia.org/wiki/Edit_distance
• 实现一个马尔科夫链文本生成器
https://en.wikipedia.org/wiki/Markov_chain
• 使用LDA实现主题模型
https://en.wikipedia.org/wiki/Topic_model
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
• 使用word2vec从大型文本语料库,例如维基百科,生成单词嵌入。
https://code.google.com/archive/p/word2vec/
https://en.wikipedia.org/wiki/Wikipedia:Database_download
NLP在社交媒体上
• Twitter:#nlproc,NLPers上的文章列表(由Jason Baldrige提供)
https://twitter.com/hashtag/nlproc
https://twitter.com/jasonbaldridge/lists/nlpers
• Reddit 社交新闻站点:/r/LanguageTechnology
https://www.reddit.com/r/LanguageTechnology
• Medium发布平台:Nlp
原文链接:
https://medium.com/towards-data-science/how-to-get-started-in-nlp-6a62aa4eaeff
自然语言处理(NLP)入门学习资源清单的更多相关文章
- 你不可错过的Java学习资源清单(包含社区、大牛、专栏、书籍等)
学习Java和其他技术的资源其实非常多,但是我们需要取其精华去其糟粕,选择那些最好的,最适合我们的,同时也要由浅入深,先易后难.基于这样的一个标准,我在这里为大家提供一份Java的学习资源清单. 一: ...
- 你不可错过的Java学习资源清单
学习Java和其他技术的资源其实非常多,但是我们需要取其精华去其糟粕,选择那些最好的,最适合我们的,同时也要由浅入深,先易后难.基于这样的一个标准,我在这里为大家提供一份Java的学习资源清单. Ja ...
- 对JAVA工程师绝对有用的Java学习资源清单
学习Java和其他技术的资源其实非常多,但也不是都是好的有用的,我们要取其精华去其糟粕,选择那些最好的,最适合我们的,同时也要由浅入深,先易后难.基于这样的一个标准,我在这里为大家提供一份Java的学 ...
- WEB前端学习资源清单
常用学习资源 JS参考与基础学习系列 [MDN]JS标准参考 es6教程 JS标准参考教程 编程类中文书籍索引 深入理解JS系列 前端开发仓库 <JavaScript 闯关记> JavaS ...
- [转] WEB前端学习资源清单
常用学习资源 JS参考与基础学习系列 [MDN]JS标准参考 es6教程 JS标准参考教程 编程类中文书籍索引 深入理解JS系列 前端开发仓库 <JavaScript 闯关记> JavaS ...
- 《转载》python/人工智能/Tensorflow/自然语言处理/计算机视觉/机器学习学习资源分享
本次分享一部分python/人工智能/Tensorflow/自然语言处理/计算机视觉/机器学习的学习资源,也是一些比较基础的,如果大家有看过网易云课堂的吴恩达的入门课程,在看这些视频还是一个很不错的提 ...
- (转)开源分布式搜索平台ELK(Elasticsearch+Logstash+Kibana)入门学习资源索引
Github, Soundcloud, FogCreek, Stackoverflow, Foursquare,等公司通过elasticsearch提供搜索或大规模日志分析可视化等服务.博主近4个月搜 ...
- Sublime text 入门学习资源篇及其基本使用方法
Sublime text 学习资源篇 史上最性感的编辑器-sublimetext,插件, 学习资源 官网 http://www.sublimetext.com/ 插件 https://packagec ...
- 开源分布式搜索平台ELK(Elasticsearch+Logstash+Kibana)入门学习资源索引
from: http://www.w3c.com.cn/%E5%BC%80%E6%BA%90%E5%88%86%E5%B8%83%E5%BC%8F%E6%90%9C%E7%B4%A2%E5%B9%B ...
随机推荐
- html 入门 "地表最强"干货 你值得拥有
# 入门 ## 一.前端三剑客 #### html ```完成页面架构的搭建文件: .html``` #### css ```完成页面样式布局(装修)文件: .css``` #### js ```完成 ...
- Saiku登录源码追踪.(十三)
Saiku登录源码追踪呀~ >>首先我们需要debug跟踪saiku登录执行的源码信息 saiku源码的debug方式上一篇博客已有说明,这里简单介绍一下 在saiku启动脚本中添加如下命 ...
- es _cat API
1.集群健康 curl -X GET "10.0.38.111:1200/_cluster/health?pretty"
- JS实现大整数乘法(性能优化、正负整数)
本方法的思路为: 一:检查了输入的合法性(非空,无非法字符) 二:检查输入是否可以进行简单计算(一个数为 0,1,+1,-1) 三:去掉输入最前面可能有的正负符号,并判断输出的正负 四:将输入的值分成 ...
- L330 Black hole picture captured for first time in space ‘breakthrough’
Black hole picture captured for first time in space ‘breakthrough’ Astronomers have captured the fir ...
- Exception,标准异常总结
常见异常种类:
- asp.net mvc模板布局
- JAVA8之Lambda表达式与方法引用表达式
一.Lambda表达式 基本语法: lambdaParameters->lambdaBody lambdaParameters传递参数,lambdaBody用于编写逻辑,lambda表达式会生成 ...
- js文本转语音
百度找了好多,大概分为两种,一种使用百度语音的API,另一种使用H5自带(低版本不兼容) 下面为一个模拟页面 <!DOCTYPE html><html lang="en&q ...
- C# 日志记录分级功能使用 按照日期,大小,或是单文件存储
本文将使用一个Nuget的一个组件库来实现一个简单强大的日志记录功能,包采用线程安全实现,所有的记录在后台完成,即使您在前台调用100万次方法,耗时也不过1000ms(具体时间依照电脑性能决定),支持 ...